Detection of photoreversibility of NO2–ONO linkage isomerization in [Co(NH3)5NO2]Cl(NO3 crystals by the photomechanical response method

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Linkage isomerization NO2-ONO (nitro-nitrito) in the complex cation [Co(NH3)5NO2]2+ is a well-studied classical reaction. It is believed that the photoisomerization of the nitro form to nitrito in the crystalline phase achieves complete transformation at low temperature, while the reverse transformation proceeds as a first-order thermal intramolecular reaction upon heating of the crystals. To date, there is no information about the possibility of reverse photoisomerization. In this work, photoisomerization in [Co(NH3)5NO2]Cl(NO3) crystals is investigated by the analysis of crystal deformation caused by the transformation at different wavelengths. A change in the lattice parameters during the transformation leads to reliably measurable elongation and bending of acicular crystals. It is shown that the limiting elongation of the crystal under prolonged irradiation depends on the wavelength, which proves the reversibility of photoisomerization. The quantum yield of the reverse reaction is estimated to be 0.04 of the quantum yield of the direct reaction.

Texto integral

Acesso é fechado

Sobre autores

S. Chizhik

Institute of Solid State Chemistry and Mechanochemistry Siberian Branch of Russian Academy of Science

Autor responsável pela correspondência
Email: stas@solid.nsc.ru
Rússia, Novosibirsk

P. Gribov

Institute of Solid State Chemistry and Mechanochemistry Siberian Branch of Russian Academy of Science

Email: stas@solid.nsc.ru
Rússia, Novosibirsk

V. Kovalskii

Institute of Solid State Chemistry and Mechanochemistry Siberian Branch of Russian Academy of Science

Email: stas@solid.nsc.ru
Rússia, Novosibirsk

A. Sidelnikov

Institute of Solid State Chemistry and Mechanochemistry Siberian Branch of Russian Academy of Science

Email: stas@solid.nsc.ru
Rússia, Novosibirsk

Bibliografia

  1. Gibbs W. and Genth F.A. Researches on the Ammonia-cobalt Bases (Smithsonian Institution, 1856).
  2. Jörgensen S.M. // Z. Anorg. Chem. 1894. V. 5. 147–196,
  3. Kauffman G.B. // Coord. Chem. Rev. 1973. V. 11. P. 161–188.
  4. Boldyreva E.V. // Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals. 1994. V. 242. P. 17–52.
  5. Boldyreva E.V. // Russian Journal of Coordination Chemistry. 2001. V. 27. P. 297–323.
  6. Basolo F., Pearson R.G. Mechanisms of inorganic reactions: Study of metal complexes in solution (John Wiley & Sons, Nashville, TN, 1967).
  7. Scandola F., Bartocci C., Scandola M.A. // The Journal of Physical Chemistry. 1974. V. 78. P. 572–575.
  8. Balzani V., Ballardini R., Sabbatini N., Moggi L. // Inorg. Chem. 1968. V. 7. P. 1398–1404.
  9. Kubota M., Ohba S. // Acta Crystallogr., Sect. B. 1992. V. 48. P. 627–632.
  10. Heyns A.M., de Waal D. // Spectrochimica Acta Part A: Molecular Spectroscopy. 1989. V. 45. P. 905–909.
  11. Eslami A. // Thermochim. Acta. 2004. V. 409. P. 189–193.
  12. Eslami A., Hasani N. // Thermochim. Acta. 2014. V. 575. P. 114–121.
  13. Chizhik S., Sidelnikov A., Zakharov B., Naumov P., Boldyreva E. // Chemical Science. 2018. V. 9. P. 2319–2335.
  14. Adell B. // Z. Anorg. Allg. Chem. 1952. V. 271. № 1–2. P. 49–64.
  15. Boldyreva E.V., Sidelnikov A.A., Chupakhin A.P., Lyakhov N.Z., Boldyrev V.V. // Dokl. Akad. Nauk SSSR 1984. V. 277. P. 893–896.
  16. Boldyreva E.V., Sidelnikov A.A. // Izv. Sib. Otd. Akad. Nauk SSR, Ser. Khim. Nauk 1987. V. 5.
  17. Boldyreva E.V. // Solid State Ionics. 1997. V. 101–103. P. 843.
  18. Kitagawa D., Tanaka R., Kobatake S. // Phys. Chem. Chem. Phys. 2015. V. 17. № 41. P. 27300.
  19. Luty T., Eckhardt C.J. // J. Amer. Chem. Soc. 1995. V. 117. № 9. P. 2441.
  20. Sidelnikov A.A., Chizhik S.A., Zakharov B.A., Chupakhin A.P., Boldyreva E.B. // CrystEngComm. 2016. V. 18. № 38. P. 7276.
  21. Grenthe I., Nordin E. // Inorg. Chem. 1979. V. 18. № 7. P. 1869.
  22. Ciofini I., Adamo C. // J. Phys. Chem. A. 2001. V. 105. № 6. P. 1086.
  23. Johnson D.A., Pashman K.A. // Inorg. Nucl. Chem. Lett. 1975. V. 11. № 1. P. 23.
  24. Muya J.T., Chung H., Lee S.U. // RSC Adv. 2018. V. 8. № 6. P. 3328.
  25. Muya J.T., Meher B.R., Sahoo S.C., Chung H. // Intern. J. Quantum Chem. 2019. V. 19. № 14. P. e25929.
  26. Jackson W.G. // J. Chem. Educ. 1991. V. 68. № 11. P. 903.
  27. Phillips W.M., Choi S., Larrabee J.A. // Ibid. 1990. V. 67. № 3. P. 267.
  28. Masciocchi N., Kolyshev A., Dulepov V., Boldyreva E., Sironi A. // Inorg. Chem. 1994. V. 33. № 12. P. 2579.
  29. Beattie I.R., Satchell D.P.N. // Trans. Faraday Soc. 1956. V. 52. P. 1590.
  30. Naumov P., Chizhik S., Panda M.K., Nath N.K., Boldyreva E. // Chem. Rev. 2015. V. 115. № 22. P. 12440.
  31. Nath N.K., Panda M.K., Sahoo S.C., Naumov P. // CrystEngComm. 2014. V. 16. № 10. P. 1850.
  32. Commins P., Desta I.T., Karothu D.P., Panda M.K., Naumov P. // Chem. Commun. 2016. V. 52. № 97. P. 13941.
  33. White T.J. Photomechanical Materials, Composites, and Systems: Wireless Transduction of Light into Work. Wiley, 2017. P. 233.
  34. Naumov P., Karothu D.P., Ahmed E., Catalano L., Commins P. et al. // J. Amer. Chem. Soc. 2020. V. 142. № 31. P. 13256.
  35. Halabi J.M., Ahmed E., Sofela S., Naumov P. // Proc. Natl. Acad. Sci. USA. 2021. V. 118. № 5. P. e2020604118.
  36. Gromov S.P., Chibisov A.K., Alfimov M.V. // Russian Journal of Physical Chemistry B. 2021. V. 15. P. 219.
  37. Kitagawa D., Tanaka R., Kobatake S. // Phys. Chem. Chem. Phys. 2015. V. 17. № 41. P. 27300.
  38. Hirano A., Kitagawa D., Kobatake S. // CrystEngComm. 2019. V. 21. № 15. P. 2495.
  39. Kitagawa D., Kobatake S. // J. Phys. Chem. C. 2013. V. 117. № 40. P. 20887.
  40. Kim T., Zhu L., Mueller L.J., Bardeen C.J. // J. Amer. Chem. Soc. 2014. V. 136. № 18. P. 6617.
  41. Ahmed E., Chizhik S., Sidelnikov A., Boldyreva E., Naumov P. // Inorg. Chem. 2022. V. 61. № 8. P. 3573.
  42. Schneider C.A., Rasband W.S., Eliceiri K.W. // Nat. Methods. 2012. V. 9. № 7. P. 671.
  43. Mayerhofer T.G., Pahlow S., Popp J. // ChemPhysChem. 2020. V. 21. № 18. P. 2029.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Extinction coefficient of isomers [Co(NH3)5NO2]2+ (1) and [Co(NH3)5ONO]2+ (2) in aqueous solution. Data taken from [8].

Baixar (71KB)
3. Fig. 2. Image of the measured crystal (a) and noise of measuring the length and relative deflection of the central part of the crystal without illumination at T = 0 °C (b).

Baixar (316KB)
4. Fig. 3. Kinetics of changes in elongation (a) and curvature (b) of a crystal upon sequential illumination by sources with wavelengths of 425, 350, and 425 nm at T = 0 °C. Insets: enlarged sections of the dependences of changes in the length and curvature of the crystal caused by switching light sources.

Baixar (233KB)
5. Fig. 4. Combined image of the crystal in three successive stages of the process shown in Fig. 3: 1 - initial state, 2 - peak of curvature when illuminated by a source l = 425 nm (t = 103 s), 3 - peak of curvature achieved after switching from a wavelength of 425 to 350 nm (t = 104 s). Image 2 shows the marks used by the crystal shape analysis algorithm. The arrows indicate the direction of crystal illumination.

Baixar (54KB)
6. Fig. 5. Kinetics of changes in elongation (a) and curvature (b) of the [Co(NH3)5NO2]Cl(NO3) crystal caused by switching radiation sources: 1 - 403 → 350 nm, 2 - 403 → 375 nm, 3 - 403 → 425 nm, 4 - 403 → 465 nm, 5 - 425 → 350 nm, 6 - 465 → 350 nm, 7 - 465 → 375 nm, 8 - 465 → 425 nm, 9 - 465 → 491 nm.

Baixar (180KB)
7. Fig. 6. Dependence of the photostationary degree of nitro-nitrite isomerization on wavelength at 0 °C in the [Co(NH3)5NO2]Cl(NO3) crystal (dots) and the model of the Cps(l) dependence, according to equation (3) at Ф2/Ф1 = 0.04 (line).

Baixar (120KB)
8. Fig. 7. Dependence of the residual curvature of the crystal in the photostationary state on the wavelength of the radiation source, calculated from equation (7).

Baixar (58KB)

Nota

Х Международная конференция им. В.В. Воеводского “Физика и химия элементарных химических про­цессов” (сентябрь 2022, Новосибирск, Россия).


Declaração de direitos autorais © Russian Academy of Sciences, 2024