Synthesis and Properties of poly(p-xylylene)–Molybdenum Oxide Nanocomposites

Capa

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Poly(p-xylylene)–molybdenum oxide nanocomposite thin films of different thicknesses and inorganic filler content are synthesized by low-temperature vapor deposition polymerization. The structure of the nanocomposites and its evolution during thermal annealing is studied by wide angle X-ray scattering and X-ray absorption spectroscopy. It is found that the molybdenum oxide nanoparticles are amorphous in both the as-deposited and annealed composite films. The short-range order characteristic of orthorhombic molybdenum trioxide is preserved in the nanoparticles; however, a noticeable disordering of the structure together with a decrease in the effective oxidation state of molybdenum are revealed. Both an increase in the filler content and thermal annealing lead to a decrease in the bandgap of the composites, which is related to the increase in the nanoparticle size. It is shown that thermal annealing improves the stability of the resistive switching (RS) characteristics in memristors based on the synthesized nanocomposites, which creates an opportunity for the application of these materials as the active layer of memristive devices.

Sobre autores

A. Nesmelov

National Research Center “Kurchatov Institute”

Email: aanesmelov@gmail.com
Moscow, Russia

V. Demin

National Research Center “Kurchatov Institute”

Email: aanesmelov@gmail.com
Moscow, Russia

A. Emelyanov

National Research Center “Kurchatov Institute”; Moscow Institute of Physics and Technology

Email: aanesmelov@gmail.com
Moscow, Russia; Dolgoprudny, Moscow oblast, Russia

A. Minnekhanov

National Research Center “Kurchatov Institute”

Email: aanesmelov@gmail.com
Moscow, Russia

A. Trofimov

National Research Center “Kurchatov Institute”; Moscow Institute of Physics and Technology

Email: aanesmelov@gmail.com
Moscow, Russia; Dolgoprudny, Moscow oblast, Russia

E. Khramov

National Research Center “Kurchatov Institute”

Email: aanesmelov@gmail.com
Moscow, Russia

A. Veligzhanin

National Research Center “Kurchatov Institute”

Email: aanesmelov@gmail.com
Moscow, Russia

D. Streltsov

National Research Center “Kurchatov Institute”

Email: aanesmelov@gmail.com
Moscow, Russia

O. Kondratev

National Research Center “Kurchatov Institute”

Email: aanesmelov@gmail.com
Moscow, Russia

A. Bakirov

National Research Center “Kurchatov Institute”

Email: aanesmelov@gmail.com
Moscow, Russia

S. Malakhov

National Research Center “Kurchatov Institute”

Email: aanesmelov@gmail.com
Moscow, Russia

S. Zavyalov

National Research Center “Kurchatov Institute”

Email: aanesmelov@gmail.com
Moscow, Russia

S. Chvalun

National Research Center “Kurchatov Institute”

Autor responsável pela correspondência
Email: aanesmelov@gmail.com
Moscow, Russia

Bibliografia

  1. Wang Z., Wu H., Burr G. W. et al. // Nat. Rev. Mater. 2020. V. 5. № 3. P. 173.
  2. Berggren K., Xia Q., Likharev K. et al. // Nanotechnology. 2021. V. 32. № 1. P. 012002.
  3. Mikhaylov A., Pimashkin A., Pigareva Y. et al. // Front. Neurosci. 2020. V. 14. P. 1.
  4. Demin V.A., Emelyanov A.V., Lapkin D.A. et al. // Crystallogr. Reports. 2016. V. 61. № 6. P. 992.
  5. Yao P., Wu H., Gao B. et al. // Nature. 2020. V. 577. P. 641.
  6. Milano G., Pedretti G., Montano K. et al. // Nat. Mater. 2022. V. 21. P. 195.
  7. Emelyanov A.V., Nikiruy K.E., Serenko A.V. et al. // Nanotechnology. 2020. V. 31. № 4. P. 045201.
  8. Makarov V.A., Lobov S.A., Shchanikov S. et al. // Front. Comput. Neurosci. 2022. V. 16.
  9. Elliott S.R. // Intern. J. Appl. Glas. Sci. 2015. V. 6. № 1. P. 15.
  10. Vincent A.F., Larroque J., Locatelliet N. et al. // IEEE Trans. Biomed. Circuits Syst. 2015. V. 9. № 2. P. 166.
  11. Khakimov R.R., Chernikova A.G., Lebedinskii Y. et al. // ACS Appl. Electron. Mater. 2021. V. 3. № 10. P. 4317.
  12. Lapkin D.A., Korovin A.N., Malakhov S.N. et al. // Adv. Electron. Mater. 2020. V. 6. № 10. P. 1.
  13. Strukov D.B., Snider G.S., Stewart D.R. et al. // Nature. 2008. V. 453. № 7191. P. 80.
  14. Minnekhanov A.A., Shvetsov B.S., Martyshov M.M. et al. // Org. Electron. 2019. V. 74. P. 89.
  15. Banerjee W., Liu Q., Hwang H. // J. Appl. Phys. 2020. V. 127. № 5.
  16. Choi S., Tan S.H., Li Z. et al. // Nat. Mater. 2018. V. 17. № 4. P. 335.
  17. Martyshov M.N., Emelyanov A.V., Demin V.A. et al. // Phys. Rev. Appl. 2020. V. 14. № 3. P. 1.
  18. Matsukatova A.N., Emelyanov A.V., Kulagin V.A. et al. // Org. Electron. 2022. V. 102. P. 10645.
  19. Zeng T., Zou X., Wang Z. et al. // Small. 2021. V. 17. № 13. P. 2006662.
  20. Громов В.Ф., Иким М.И., Герасимов Г.Н. и др. // Хим. физика. 2021. Т. 40. № 12. С. 76.
  21. Иким М.И., Спиридонова Е.Ю., Белышева Т.В. и др. // Хим. физика. 2016. Т. 35. № 6. С. 90.
  22. Мацукатова А.Н., Емельянов А.В., Миннеханов А.А. и др. // Письма в ЖТФ. 2020. Т. 46. № 2. С. 25
  23. Matsukatova A.N., Emelyanov A.V., Minnekhanov A.A. et al. // Appl. Phys. Lett. 2020. V. 117. № 24. P. 243501.
  24. Minnekhanov A.A., Emelyanov A.V., Lapkin D.A. et al. // Sci. Rep. 2019. V. 9. № 1. P. 10800.
  25. Zavyalov S.A., Grigoriev E.I. Zavyalov A.S. et al. // Intern. J. Nanosci. 2005. V. 04. № 01. P. 149.
  26. Streltsov D.R., Mailyan K.A., Gusev A.V. et al. // Polymer. 2015. V. 71. P. 60.
  27. Nesmelov A.A., Oveshnikov L.N., Ozerin S.A. et al. // J. Phys. Chem. C. 2019. V. 123. № 16. P. 10517.
  28. Oveshnikov L.N., Zavyalov S.A., Trunkin I.N. et al. // Sci. Rep. 2021. V. 11. № 1. P. 16004.
  29. Yeh Y.S., James W.J., Yasuda H. // J. Polym. Sci., Part B: Polym. Phys. 1990. V. 28. № 4. P. 545.
  30. Pokhodnya K.I., Bonner M., Miller J.S. // Chem. Mater. 2004. V. 16. № 24. P. 5114.
  31. Hübers H.W., Schubert J., Krabbe A. et al. // Infrared Phys. Technol. 2001. V. 42. № 1. P. 41.
  32. Shvetsov B.S., Minnekhanov A.A., Emelyanov A.V. et al. // Nanotechnology. 2022. V. 33. № 25. P. 255201.
  33. Deb S.K., Bowden F.P. // Proc. Roy. Soc. London, Ser. A. 1968. V. 304. № 1477. P. 211.
  34. Xue Q., Wang Y.C., Wei X.H. // Appl. Surf. Sci. 2019. V. 479. P. 469.
  35. Трахтенберг Л.И., Герасимов Г.Н., Григорьев Е.И. // ЖФХ. 1999. Т. 73. № 2. С. 209
  36. Chernyshov A., Veligzhanin A., Zubavichus Y. // Nucl. Instr. Meth. Phys. Res. A. 2009. V. 603. P. 95.
  37. Ravel B. // J. Synchrotron. Rad. 2005. V. 12. P. 537.
  38. Суровой Э.П., Еремеева Г.О. // Неорган. материалы. 2013. Т. 49. № 5. С. 500.
  39. Tauc J. // Mater. Res. Bull. 1968. V. 3. P. 37.
  40. Ressler T., Wienold J., Jentoft R.E. et al. // J. Catal. 2002. V. 210. P. 67.
  41. Farges F., Siewert R., Brown G.E. et al. // Can. Mineral. 2006. V. 44. P. 731.
  42. Andersson G., Magneli A. // Acta Chem. Scand. 1950. V. 4. P. 793.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (191KB)
3.

Baixar (263KB)
4.

Baixar (919KB)
5.

Baixar (342KB)

Declaração de direitos autorais © А.А. Несмелов, С.А. Завьялов, С.Н. Малахов, А.В. Бакиров, О.А. Кондратьев, Д.Р. Стрельцов, А.А. Велигжанин, Е.В. Храмов, А.Д. Трофимов, А.А. Миннеханов, А.В. Емельянов, В.А. Демин, С.Н. Чвалун, 2023