Creation of Two-Dimensional High Temperature Superconductivity Under the Influence of an Electric Field

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This study discusses the conditions for the occurrence of two-dimensional superconductivity under the action of an electric field on an La2 – xSrxCuO4 plate at a temperature lower than the maximum temperature of the superconducting transition, but when the concentration of charge carriers falls outside the superconductivity range. The study is carried out for a lanthanum-strontium cuprate plate at various hole concentrations, as well as temperature, and potential differences. A quasi-two-dimensional superconducting layer arises near the surface of the plate. The thickness of the superconducting layer is several angstroms and independent of the field strength in the range investigated. The thickness depends only on the concentration of holes and temperature. In addition, the distance of the superconducting layer from the edge of the plate is found to be a function of all three factors. The conditions used for conducting the experiment are also formulated.

Sobre autores

V. Bodneva

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: litrakh@gmail.com
Moscow, Russia

M. Kozhushner

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: litrakh@gmail.com
Moscow, Russia

B. Lidskii

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: litrakh@gmail.com
Moscow, Russia

V. Posvyanskii

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: litrakh@gmail.com
Moscow, Russia

L. Trakhtenberg

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Moscow State University

Autor responsável pela correspondência
Email: litrakh@gmail.com
Moscow, Russia; Moscow, Russia

Bibliografia

  1. Bednorz J.G., Müller K. A. // Z. Phys. B. 1986. V. 4. P. 189.
  2. Keimer B., Kivelson S.A., Norman M.R. et al. // Nature. 2015. V. 518. P. 179.
  3. Yoshida T., Zhou X.J., Lu D.H. et al. // J. Phys.: Cond. Matt. 2007. V. 19. P. 125209.
  4. Rice T.M. // Phys. Rev. A. 1965. V. 140. P. 1889.
  5. Reyren N., Thiel S., Caviglia A.D. et al. // Science. 2007. V. 317. P. 1196.
  6. Brun C., Cren T., Cherkez V. et al. // Nature Phys. 2014. V. 10. P. 444.
  7. Uchihashi T. // Supercond. Sci. Tekhnol. 2016. V. 30. P. 1.
  8. Uchihashi T., Yoshizava S., Minamitami E. et al. // Molec. Syst. Des. Eng. 2019. V. 4. P. 511.
  9. Садовский М.В. // УФН. 2016. Т. 186. С. 1035.
  10. Pavlov D.P., Zagidullin R.R., Mikhailov V.M. et al. // Phys. Rev. Lett. 2019. V. 122. P. 237001.
  11. Glover R.E., Sherill M.D. // Phys. Rev. Lett. 1960. V. 5. P. 248.
  12. Shkuratov S.I. // J. Vac. Sci. Technol. 1993. V. 11. P. 353.
  13. Sakai S. // Phys. Rev. B. 1993. V. 47. P. 9042.
  14. Moravets K. // Ibid. 2002. V. 66. P. 172508.
  15. Konsin P., Sorkin B. // Ibid. 1998. V. 58. P. 5795.
  16. Ahn C.H., Triscone J.-M., Mannhart J. // Nature. 2003. V. 424. P. 1015.
  17. Галашев А.Е., Рахманова О.Р., Катин К.П. и др. // Хим. физика. 2020. Т. 39. № 11. С. 80.
  18. Симбирцева Г.В., Пивень Н.П., Бабенко С.Д. // Хим. физика. 2020. Т. 39. № 12. С. 60.
  19. Val’kov V.V., Dzebisashvili D.M., Barabanov A.F. // Phys. Lett. A. 2015. V. 379. № 5. P. 421.
  20. Вальков В.В., Дзебисашвили Д.М., Барабанов А.Ф. // Письма ЖЭТФ. 2016. Т. 104. С. 745.
  21. Ландау Л.Д., Лифшиц Е.М. Статистическая физика. М.: Наука, 1995.
  22. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М.: Наука, 1982.
  23. Gelfand I.M., Fomin S.V. Calculus of variations. N.J.: Prentice-Hall, Inc., Englewood Cliffs, 1963.
  24. Годунов C.К., Рябенький В.С. Разностные схемы. М.: Наука, 1977.
  25. Takagi H., Cava R.J., Marezio M. et al. // Phys. Rev. Lett. 1992. V. 68. P. 3777.
  26. Nagano T., Tomioka T.Y., Nakayama Y. et al. // Phys. Rev. B. 1993. V. 48. P. 9689.
  27. Yamada K., Lee C.H., Kurahashi K. et al. // Ibid. 1998. V. 57. P. 6165.
  28. Takagi H., Ido T., Ishibashi S. et al. // Ibid. 1989. V. 40. P. 2254.
  29. Torrance J.B., Bezinge A., Nazzal A.I., Huang T.C. et al. // Ibid. P. 8872.
  30. Liang R., Bonn D.A., Hardy W.N. // Ibid. 2006. V. 73. P. 180505.
  31. Кожушнер М.А., Посвянский В.С., Лидский Б.В. и др. // ФТТ. 2020. Т. 62. № 8. С. 1154.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (110KB)
3.

Baixar (48KB)
4.

Baixar (63KB)
5.

Baixar (63KB)

Declaração de direitos autorais © В.Л. Боднева, М.А. Кожушнер, Б.В. Лидский, В.С. Посвянский, Л.И. Трахтенберг, 2023