Thermodynamics of sublimation and the effect of aggregation on the electronic absorption spectra of etioporphyrins Cu-etiop-III and VO-etiop-III

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this paper, a comparative experimental and theoretical study of two etioporphyrin complexes (Cu-EtioP-III and VO-EtioP-III) with transition metals is carried out. The sublimation enthalpies of Cu-EtioP-III and VO-EtioP-III were determined to be 145(3) kJ/mol and 195(5) kJ/mol, respectively using the Knudsen effusion method with mass spectrometric control of the vapor composition. The electronic absorption spectra of vacuum-sublimated Cu-EtioP-III layers were simulated using TD-DFT calculations for mono-, di-, tetra- and hexameric forms with the geometric structure corresponding to the crystal unit cell. Comparison of the results with similar data for VO-EtioP-III allows us to draw conclusions about the ability of the simplest natural porphyrinoids to form intermolecular bonds during aggregation (in thin layers, crystals).

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Eroshin

Research Institute of Chemistry of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology

Хат алмасуға жауапты Автор.
Email: eroshin_av@isuct.ru
Ресей, Ivanovo

Yu. Zhabanov

Research Institute of Chemistry of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology; Institute for Physics of Microstructures of the Russian Academy of Sciences

Email: eroshin_av@isuct.ru
Ресей, Ivanovo; Nizhny Novgorod

P. Stuzhin

Research Institute of Chemistry of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology

Email: eroshin_av@isuct.ru
Ресей, Ivanovo

G. Pakhomov

Research Institute of Chemistry of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology; Institute for Physics of Microstructures of the Russian Academy of Sciences

Email: eroshin_av@isuct.ru
Ресей, Ivanovo; Nizhny Novgorod

Әдебиет тізімі

  1. Senge M.O., Sergeeva N.N., Hale K.J. // Chem. Soc. Rev. 2021. V. 50. P. 4730. https://doi.org/10.1039/c7cs00719a
  2. Koifman O.I., Stuzhin P.A., Travkin V.V., Pakhomov G.L. // RSC Adv. 2021. V. 11. № 25. P. 15131. https://doi.org/10.1039/d1ra01508g
  3. Cherepanov D.A., Milanovskii G.E., Aibush A.V. et al. // Khim. Fizika. 2023. V. 42. № 6. P. 77. https://doi.org/10.31857/S0207401X23060031
  4. Basova T.V., Belykh D.V., Vashurin A.S., Klyamer D.D., Koifman O.I., Krasnov P.O., Lomova T.N., Loukhina I.V., Motorina E.V., Pakhomov G.L., Polyakov M.S., Semeikin A.S., Stuzhin P.A. et al. // J. Struct. Chem. 2023. V. 64. № 5. P. 1. https://doi.org/10.1134/S0022476623050037
  5. Senge M.O., Davis M. // J. Porphyrins Phthalocyanines. 2010. V. 14. № 7. P. 557. https://doi.org/10.1142/S1088424610002495
  6. Koifman O.I., Koptyaev A.I., Travkin V.V., Yunin P.A., Somov N.V., Masterov D.V., Pakhomov G.L. // Colloids Interfaces. 2022. V. 6. № 4. P. 77. https://doi.org/10.3390/colloids6040077
  7. Ngo H.T., Minami K., Imamura G. et al. // Sensors. 2018. V. 18. № 5. P. 1640. https://doi.org/10.1142/S1088424610002495
  8. Burtsev I.D., Egorov A.E., Kostyukov A.A. et al. // Khim. Fizika. 2022. V. 41. № 2. P. 41. https://doi.org/10.31857/S0207401X22020029
  9. Povolotskii A.V., Soldatova D.A., Lukyanov D.A. et al. // Khim. Fizika. 2023. V. 42. № 12. P. 70. https://doi.org/10.31857/S0207401X23120087
  10. Koifman O.I., Rychikhina E.D., Yunin P.A., Koptyaev A.I., Sachkov Yu.I., Pakhomov G.L. // Colloids Surf., A. 2022. V. 648. P. 129284. https://doi.org/10.1016/j.colsurfa.2022.129284
  11. Travkin V.V., Sachkov Yu.I., Koptyaev A.I., Pakhomov G.L. // Chem. Phys. 2023. V. 573. P. 112014. https://doi.org/10.1016/j.chemphys.2023.112014
  12. Pakhomov G.L., Koptyaev A.I., Yunin P.A., Somov N.V., Semeikin A.S., Rychikhina E.D., Stuzhin P.A. // ChemistrySelect. 2023. V. 8. № 45. P. e202303271. https://doi.org/10.1002/slct.202303271
  13. Koptyaev A.I., Rychikhina E.D., Zhabanov Yu.A., Travkin V.V., Pakhomov G.L. // Supramol. Mater. (China). 2024. V. 3. № 1. P. 100075. https://doi.org/10.1016/j.supmat.2024.100075
  14. Zhabanov Yu.A., Eroshin A.V., Koifman O.I., Travkin V.V., Pakhomov G.L. // Macroheterocycles. 2024. V. 17. № 1. P. 4. https://doi.org/10.6060/mhc245693p
  15. Bader R.F.W. Atoms in Molecules. Encycl. Comput. Chem. Chichester, UK: J. Wiley & Sons, 2002. https://doi.org/10.1002/0470845015.caa012
  16. Neese F. // WIREs Comput. Mol. Sci. 2012. V. 2. № 1. P. 73. https://doi.org/10.1002/wcms.81
  17. Neese F. // Ibid. 2022. V. 12. № 5. P. e1606. https://doi.org/10.1002/wcms.1606
  18. Grimme S., Brandenburg J.G., Bannwarth C. et al. // J. Chem. Phys. 2015. V. 143. № 5. P. 054107. https://doi.org/10.1063/1.4927476
  19. Praveen P.A., Saravanapriya D., Bhat S.V. et al. // Mater. Sci. Semicond. Process. 2024. V. 173. P. 108159. https://doi.org/10.1016/j.mssp.2024.108159
  20. Bannwarth Ch., Grimme S. // Comput. Theor. Chem. 2014. V. 1040–1041. P. 45. https://doi.org/10.1016/j.comptc.2014.02.023
  21. Martynov A.G., Mack J., May A.K. et al. // ACS Omega. 2019. V. 4. № 4. P. 7265. https://doi.org/10.1021/acsomega.8b03500
  22. Lu T., Chen F. // J. Comput. Chem. 2012. V. 33. № 5. P. 580. https://doi.org/10.1002/jcc.22885
  23. Pogonin A.E., Krasnov A.V., Zhabanov Yu.A. et al. // Macroheterocycles. 2012. V. 5. № 4–5. P. 315. https://doi.org/10.6060/mhc2012.121109g
  24. Pogonin A.E., Tverdova N.V., Ischenko A.A. et al. // J. Mol. Struct. 2015. V. 1085. P. 276–285. https://doi.org/10.1016/j.molstruc.2014.12.089
  25. Perlovich G.L., Golubchikov O.A., Klueva M.E. // J. Porphyrins Phthalocyanines. 2000. V. 4. № 8. P. 699. https://doi.org/10.1002/1099-1409(200012)4:8<699:: AID-JPP284>3.0.CO;2-M
  26. Chickos J.S., Acree Jr. W.E. // J. Phys. Chem. Ref. Data. 2002. V. 31. № 2. P. 537. https://doi.org/10.1063/1.1475333
  27. Kudin L.S., Dunaev A.M., Motalov V.B. et al. // J. Chem. Thermodyn. 2020. V. 151. P. 106244. https://doi.org/10.1016/j.jct.2020.106244
  28. Espinosa E., Molins E., Lecomte C. // Chem. Phys. Lett. 1998. V. 285. № 3–4. P. 170. https://doi.org/10.1016/S0009-2614(98)00036-0
  29. Eroshin A.V., Otlyotov A.A., Kuzmin I.A., Stuzhin P.A., Zhabanov Y.A. // Int. J. Mol. Sci. 2022. V. 23. № 2. P. 939. https://doi.org/10.3390/ijms23020939
  30. Eroshin A.V., Koptyaev A.I., Otlyotov A.A., Minenkov Y., Zhabanov Y.A. // Int. J. Mol. Sci. 2023. V. 24. № 8. P. 7070. https://doi.org/10.3390/ijms24087070
  31. Koifman O.I., Rychikhina E.D., Travkin V.V., Sachkov Y.I., Stuzhin P.A., Somov N.V., Yunin P.A., Zhabanov Yu.A., Pakhomov G.L. // ChemPlusChem. 2023. V. 88. № 5. P. e202300141. https://doi.org/10.1002/cplu.202300141
  32. Nemykin V.N., Hadt R.G. // J. Phys. Chem. A. 2010. V. 114. № 45. P. 12062. https://doi.org/10.1021/jp1083828
  33. Gouterman M. // J. Mol. Spectrosc. 1961. V. 6. P. 138. https://doi.org/10.1016/0022-2852(61)90236-3
  34. Gouterman M., Wagnière G.H., Snyder L.C. // Ibid. 1963. V. 11. № 1–6. P. 108. https://doi.org/10.1016/0022-2852(63)90011-0
  35. Mironov N.A., Milordov D.V., Abilova G.R. et al. // Pet. Chem. 2019. V. 59. P. 1077. https://doi.org/10.1134/S0965544119100074

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Rice. 1. Structure of M-EtioP-III molecules (M = Cu, VO).

Жүктеу (18KB)
3. Fig. 2. Spatial molecular models of two dimeric forms (2a and 2b), tetramer (4) and hexamer (6) of Cu-EtioP-III.

Жүктеу (334KB)
4. Fig. 3. Mass spectra of complexes: a – Cu-EtioP-III (T = 558 K); b – VO-EtioP-III (T = 570 K). The insets show experimental isotope distributions of the molecular ion.

Жүктеу (76KB)
5. Fig. 4. Dependences of the logarithm of ion currents, ln (IT), on the reciprocal temperature: a – for the molecular ion Cu-EtioP-III in the temperature range of 510–558 K; b – for the molecular ion VO-EtioP-III in the temperature range of 538–573 K.

Жүктеу (45KB)
6. Fig. 5. The position of the critical bond points according to the QTAIM analysis of the electron density distribution in the Cu-EtioP-III (a) and VO-EtioP-III (b) dimers.

Жүктеу (216KB)
7. Fig. 6. a – Calculated electronic absorption spectra of different models of Cu-EtioP-III aggregates; b – calculated spectrum of dimer 2a (1); experimental spectrum of a dilute solution of Cu-EtioP-III in toluene (2); experimental spectrum of a thin (100 nm) sublimated film of Cu-EtioP-III (3).

Жүктеу (76KB)

© Russian Academy of Sciences, 2025