Structure, conductivity and sensor properties of NiO–In2O3 composites synthesis by different methods

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of the synthesis method of NiO–In2O3 composites on their structural, conductive and sensory characteristics when detecting hydrogen was studied. Impregnation of indium oxide nanoparticles with a nickel nitrate salt and a hydrothermal method with aqueous solutions of the corresponding salts were used. It has been shown that during the impregnation process, nickel oxide is formed in the form of amorphous nanoparticles on the surface of indium oxide, and during hydrothermal treatment, nickel ions are introduced into In2O3 structures. In impregnated composites, the particle size of indium oxide does not depend on the composition and is 60 nm, while in hydrothermal composites it decreases from 35 to 30 nm with increasing nickel content. With an increase in nickel content from 0 to 3 wt.% for both synthesis methods, the conductivity decreases, and the resistance for hydrothermal samples is an order of magnitude higher than for impregnated ones. The sensory response was almost twice as high.

Full Text

Restricted Access

About the authors

M. I. Ikim

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: ikimmary1104@gmail.com
Russian Federation, Moscow

A. R. Erofeeva

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

Email: ikimmary1104@gmail.com
Russian Federation, Moscow

E. Yu. Spiridonova

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

Email: ikimmary1104@gmail.com
Russian Federation, Moscow

V. F. Gromov

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

Email: ikimmary1104@gmail.com
Russian Federation, Moscow

G. N. Gerasimov

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

Email: ikimmary1104@gmail.com
Russian Federation, Moscow

L. I. Trakhtenberg

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences; Lomonosov Moscow State University

Email: ikimmary1104@gmail.com
Russian Federation, Moscow; Moscow

References

  1. Q. Li, W. Zeng, Y. Li. Sens. Actuators B. 359, 131579 (2022).
  2. C. Zhang, K. Xu, K. Liu, J. Xu, Z. Zheng, Coord. Chem. Rev. 472, 214758 (2022).
  3. K.G. Krishna, S. Parne, N. Pothukanuri, V. Kathirvelu, S. Gandi, D. Joshi. Sens. Actuators A. 341, 113578 (2022).
  4. L.I. Trakhtenberg, M.I. Ikim, O.J. Ilegbusi, V.F. Gromov, G.N. Gerasimov. Chemosens. 11, 320 (2023).
  5. S. Yan, W. Song, D. Wu, S. Jin, S. Dong, H. Hao, W. Gao, J. Alloys Compd. 896, 162887 (2022).
  6. M.I. Ikim, E.Y. Spiridonova, V.F. Gromov, G.N. Gerasimov, L.I. Trakhtenberg, Russ. J. Phys. Chem. B 17, 774 (2023).
  7. L.C. Jimenez, H.A. Mendez, B.A. Paez, M.E. Ramırez, H. Rodrıguez. Braz. J. Phys. 36, 1017 (2006).
  8. P. Prathap, D.G. Gowri, Y.P.V. Subbaiah, R.K.T. Ramakrishna, V. Ganesan // Current Appl. Phys. 8, 120 (2008).
  9. G.N. Gerasimov, V.F. Gromov, M.I. Ikim, L.I. Trakhtenberg. Russ. J. Phys. Chem. B 15, 1072 (2021).
  10. X. Fan, Y. Xu, W. He. RSC advances. 11, 11215 (2021).
  11. Y. Zhang, J. Cao, Y. Wang. Vacuum. 202, 111149 (2022).
  12. Z. Jin, C. Wang, L. Wu, H. Song, X. Yao, J. Liu, F. Wang. Sens. Actuators B. 377, 133058 (2023).
  13. M.I. Ikim, E.Y. Spiridonova, V.F. Gromov, G.N. Gerasimov, L.I. Trakhtenberg. Russ. J. Phys. Chem. B 16, 1180 (2022).
  14. V.F. Gromov, M.I. Ikim, G.N. Gerasimov, L.I. Trakhtenberg. Russ. J. Phys. Chem. B. 15, 1084 (2021).
  15. M.I. Ikim, E.Y. Spiridonova, V.F. Gromov, G.N. Gerasimov, L.I. Trakhtenberg. Russ. J. Phys. Chem. B. 18, 283 (2024).
  16. Y. Wang, M. Yao, R. Guan, Z. Zhang, J. Cao. J. Alloys Compd. 854, 157169 (2021).
  17. M.I. Ikim, V.F. Gromov, G.N. Gerasimov, E.Y. Spiridonova, A.R. Erofeeva, K.S. Kurmangaleev, L.I. Trakhtenberg. Micromachines. 14, 1685 (2023).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the lattice parameter (a) and particle size (b) of In2O3 on the NiO content in composites obtained by the impingement method (squares) and hydrothermal method (asterisks).

Download (57KB)
3. Fig. 2. Concentration dependence of resistance (a) and sensory response at detection of 0.9% H2 (b) of composites obtained by different methods. The designations are the same as in Fig. 1.

Download (61KB)

Copyright (c) 2025 Russian Academy of Sciences