DTA/TG Study of the Interaction in the Nickel Nitrate Hexahydrate–Hexamethylentetramine System

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper presents the results of DTA/TG studies of one of the most popular systems in solution combustion synthesis (SCS) nickel nitrate hexahydrate (Ni(NO3)2⋅6H2O)–hexamethylenetetramine (C6H12N4). X‑ray diffraction and EDS-assisted SEM are used for characterizing the reaction products. The specified system is studied in the form of a powder mixture, a gel obtained by dissolving the initial reagents in distilled water, and the same gel, heat treated at 100°C. It is established that the formation of metallic nickel is possible only if the mixture of reagents is first transferred to the gel state. The values of the effective activation energies of the formation of NiO and metallic nickel are calculated, and the features of the course of interactions depending on the method of preparation of the studied samples are presented.

About the authors

A. S. Arzumanyan

Nalbandyan Institute of Chemical Physics, National Academy of Sciences of the Republic of Armenia, 0014, Yerevan, Republic of Armenia

Email: yeva.grig@gmail.com
Армения, Ереван

N. G. Amirkhanyan

Nalbandyan Institute of Chemical Physics, National Academy of Sciences of the Republic of Armenia, 0014, Yerevan, Republic of Armenia

Email: yeva.grig@gmail.com
Армения, Ереван

E. G. Grigoryan

Nalbandyan Institute of Chemical Physics, National Academy of Sciences of the Republic of Armenia, 0014, Yerevan, Republic of Armenia

Email: yeva.grig@gmail.com
Армения, Ереван

S. L. Kharatyan

Nalbandyan Institute of Chemical Physics, National Academy of Sciences of the Republic of Armenia, 0014, Yerevan, Republic of Armenia

Author for correspondence.
Email: yeva.grig@gmail.com
Армения, Ереван

References

  1. Wena Wei, Wu Jin-Ming // RSC Adv. 2014. V. 4. P. 58 090; https://doi.org/10.1039/C4RA10145F
  2. Mukasyan A.S., Dinka P. // Intern. J. SHS. 2007. V. 16. P. 23; https://doi.org/10.3103/S1061386207010049
  3. Manukyan Kh.V., Cross A., Roslyakov S. et al. // J. Phys. Chem. C. 2013. V. 117. P. 24417; https://doi.org/10.1021/jp408260m
  4. Varma A., Mukasyan A.S., Rogachev A.S., Manukyan K.V. // Chem. Rev. 2016. V. 23. P. 14493; https://doi.org/10.1021/acs.chemrev.6b00279
  5. González-Cortés S.L., Imbert F.E. // Appl. Catal. A: 2013. V. 452. P. 117; https://doi.org/10.1016/j.apcata.2012.11.024
  6. Khort A., Roslyakov S., Loginov P. // Nano-Struct. Nano-Objects. 2021. V. 26. 10072https://doi.org/10.1016/j.nanoso.2021.100727
  7. Aruna S.T., Mukasyan A.S. // Combust. Synth. Nanomater. Curr. Opin. Sol. St. Mater. Sci. 2008. V. 12. P. 44; https://doi.org/10.1016/j.cossms.2008.12.002
  8. Patil K.C., Aruna S.T., Mimani T. // Combust. Synthesis: An Update. Curr. Opin. Sol. St. Mater. Sci. 2002. V. 6. P. 507; https://doi.org/10.1016/S1359-0286(02)00123-7
  9. Deshpande K., Mukasyan A.S., Varma A. // Chem. Mater. 2004. V. 16. P. 4896; https://doi.org/10.1021/cm040061m
  10. Carlos E., Martins R., Fortunato E., Branquinho R. // Chem. Eur. J. 2020. V. 26. P. 9099; https://doi.org/10.1002/chem.202000678
  11. Erri P., Nader J., Varma A. // Adv. Mater. 2008. V. 20. P. 1243; https://doi.org/10.1002/adma.200701365
  12. Kumar A., Wolf E.E., Mukasyan A.S. // AIChE J. 2011. V. 57. P. 3473; https://doi.org/10.1002/aic.12537
  13. Yermekova Z., Roslyakov S.I., Kovalev D.Y. et al. // J. Sol-Gel Sci. Technol. 2020. V. 94. P. 310; https://doi.org/10.1007/s10971-020-05252-9
  14. Тертышная Ю.В., Подзорова М.В., Монахова Т.В., Попов А.А. // Хим. физика. 2019. Т. 38. № 3. С. 80; https://doi.org/10.1134/S0207401X19030105
  15. Ушакова Т.М., Старчак Е.Е., Гостев С.С. и др. // Хим. физика. 2020. Т. 39. № 5. С. 66; https://doi.org/10.31857/S0207401X2005012X
  16. Захаров В.В., Чуканов Н.В., Шилов Г.В. и др. // Хим. физика. 2021. Т. 40. № 7. С. 35; https://doi.org/10.31857/S0207401X21070128
  17. Перова А.Н., Бревнов П.Н., Усачёв С.В. и др. // Хим. физика. 2021. Т. 40. № 7. С. 49; https://doi.org/10.31857/S0207401X21070074
  18. Gusev E.A., Dalidovich S.V., Krasovskaya L.I. // Thermochim. Acta. 1985. V. 93. P. 21; https://doi.org/10.1016/0040-6031(85)85006-1
  19. Brockner W., Ehrhardt C., Gjikaj M. // Ibid. 2007. V. 456. P. 64; https://doi.org/10.1016/j.tca.2007.01.031
  20. Григорьян Е.Г., Ниазян О.М., Харатян С.Л. // Хим. физика. 2008. Т. 27. № 9. С. 54.
  21. Kissinger H.E. // Anal. Chem. 1957. V. 29. P. 1702; https://doi.org/10.1021/ac60131a045
  22. Mansour S. // Thermochim. Acta. 1993. V. 228. P. 173; https://doi.org/10.1016/0040-6031(93)80287-K
  23. Dollimore D., Gamlen G.A., Taylor T.J. // Ibid. 1981. V. 51. P. 269; https://doi.org/10.1016/0040-6031(81)85164-7
  24. Amirkhanyan N., Kharatyan S., Manukyan Kh., Aprahamian A. // Combust. and Flame. 2020. V. 211. P. 119; https://doi.org/10.1016/j.combustflame.2020.07.038
  25. Afanasiev P., Chouzier S., Czeri T. et al. // Inorg. Chem. 2008. V. 47. P. 2303; https://doi.org/10.1021/ic7013013
  26. Prakash A.S., Khadar A.M.A., Patil K.C. et al. // J. Mater. Synth. Process. 2002. V. 10. P. 135; https://doi.org/10.1023/A:1021986613158
  27. Afanasiev P. // Inorg. Chem. 2002. V. 41. P. 5317; https://doi.org/10.1021/ic025564d
  28. Singh G., Baranwal B.P., Kapoor I.P.S. et al. // J. Therm. Anal. Calorim. 2008. V. 91. P. 971; https://doi.org/10.1007/s10973-007-8615-5

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (87KB)
3.

Download (85KB)
4.

Download (79KB)
5.

Download (67KB)
6.

Download (99KB)
7.

Download (51KB)

Copyright (c) 2023 А.С. Арзуманян, Н.Г. Амирханян, Е.Г. Григорян, С.Л. Харатян