Investigation of Macrokinetic Parameters of Combustion of (Ti + C)-Based Powder and Granular Mixtures: Elucidation of the Negative Activation Energy Paradox

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the first time, a comparative study is carried out of the macrokinetic parameters of the combustion of powder and granular mixtures of Ti + C when diluted by metal powders. The burning rates of powder mixtures (Ti + C) + 20% Me (Me = Ni, Cu) turned out to be higher than those of Ti + C mixtures, despite the lower temperature of combustion. This contradicts the theoretical models of the dependence of the combustion rate on the maximum temperature in condensed heterogeneous media. When diluting a Ti + C mixture with Ti or TiC powders, such a contradiction does not occur. The data obtained are explained using the convective-conductive model of combustion by the strong influence of the impurity gas release from titanium ahead of the combustion front. The values of the time of the transition of combustion between the granules and the burning rate of the material inside the granules, as well as a quantitative assessment of the decelerating effect of impurity gases in powder mixtures, are obtained using the values of combustion rates of the mixtures with granules of different sizes. For the (Ti + C) + 20% Ni mixture, the ignition time of the granules turned out to be less than 1 ms. The efficiency of the combustion transition between granules in the presence of a hot Ni melt is explained by comparing the combustion parameters of granular mixtures of Ti + C diluted with other metal powders and titanium carbide.

About the authors

B. S. Seplyarski

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: seplb1@mail.ru
Chernogolovka, Russia

R. A. Kochetkov

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: seplb1@mail.ru
Chernogolovka, Russia

T. G. Lisina

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: seplb1@mail.ru
Chernogolovka, Russia

N. I. Abzalov

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: seplb1@mail.ru
Chernogolovka, Russia

D. S. Vasilyev

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Author for correspondence.
Email: seplb1@mail.ru
Chernogolovka, Russia

References

  1. Костин С.В., Кришеник П.М., Рогачев С.А // Хим. физика. 2021. Т. 40. № 1. С. 24; https://doi.org/10.31857/S0207401X21010076
  2. Турсынбек С., Зарко В.Е., Глотов О.Г. и др. // Хим. физика. 2020. Т. 39. № 5. С. 16; https://doi.org/10.31857/S0207401X20050118
  3. Силяков С.Л., Юхвид В.И., Хоменко Н.Ю. и др. // Хим. физика. 2020. Т. 39. № 9. С. 94; https://doi.org/10.31857/S0207401X20090113
  4. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2020. Т. 39. № 9. С. 39; https://doi.org/10.31857/S0207401X20090058
  5. Мержанов А.Г., Рогачев А.С., Умаров Л.М., Кирьяков Н.В. // Физика горения и взрыва. 1997. Т. 33. № 4. С. 55.
  6. Щербаков В.А., Сычев А.Е., Штейнберг А.С. // Физика горения и взрыва. 1986. Т. 22. № 4. С. 55.
  7. Мукасьян А.С., Шугаев В.А., Кирьяков Р.М. // Физика горения и взрыва. 1993. Т. 2. № 1. С. 9.
  8. Камынина О.К., Рогачев А.С., Умаров Л.М. // Физика горения и взрыва. 2003. Т. 39. № 5. С. 69.
  9. Сеплярский Б.С., Вадченко С.Г. // Докл. АН. 2004. Т. 398. № 1. С. 72.
  10. Алдушин А.П., Мартемьянова Т.М., Мержанов А.Г. и др. // Физика горения и взрыва. 1972. Т. 8. № 2. С. 202.
  11. Dunmead S.D., Readey D.W., Semler C.E. // J. Amer. Ceram. Soc. 1989. V. 72. P. 2318.
  12. Varma A., Rogachev A.S., Mukasyan A.S., Hwang S. // Adv. Chem. Eng. 1998. V. 24. P. 79.
  13. Rogachev A.S. // Intern. J. Self-Propag. High-Temp. Synth. 1997. V. 6. № 2. P. 215.
  14. Сеплярский Б.С. // Докл. АН. 2004. Т. 396. № 5. С. 640.
  15. Rubtsov N.M., Seplyarskii B.S., Alymov M.I. Ignition and Wave Processes in Combustion of Solids. Springer International Publishing AG, Cham, Switzerland, 2017; https://doi.org/10.1007/978-3-319-56508-8_4
  16. Seplyarskii B.S., Kochetkov R.A. // Intern. J. Self-Propag. High-Temp. Synth. 2017. V. 26. № 2. P. 134.
  17. Сеплярский Б.С., Кочетков Р.А., Лисина Т.Г., Абзалов Н.И. // Физика горения и взрыва. 2021. Т. 57. № 1. С. 65; https://doi.org/10.15372/FGV20210107
  18. Nikogosov V.N., Nersesyan G.A., Shcherbakov V.A., Kharatyan S.L., Shteinberg A.S. // Intern. J. Self-Propag. High-Temp. Synth. 1999. V. 8. № 3. P. 321.
  19. Seplyarskii B.S., Kochetkov R.A., Lisina T.G., Rubtsov N.M., Abzalov N.I. // Combust. and Flame. 2022. V. 236. P. 111811; https://doi.org/10.1016/j.combustflame.2021.111811
  20. Зенин А.А., Мержанов А.Г., Нерсисян Г.А. // Физика горения и взрыва. 1981. Т. 17. № 1. С. 79.
  21. Slezak T., Zmywaczyk J., Koniorczyk P. // AIP Conf. Proc. 2019. V. 2170. Issue 1. 020019; https://doi.org/10.1063/1.5132738
  22. Корольченко И.А., Казаков А.В., Кухтин А.С., Крылов В.Л. // Пожаровзрывобезопасность веществ и материалов. 2004. Т. 13. № 4. С. 36.
  23. Хусид Б.М., Хина Б.Б., Баштовая Е.А. // Физика горения и взрыва. 1991. Т. 6. № 6. С. 64.
  24. Зиновьев В.Е. Теплофизические свойства металлов при высоких температурах. М.: Металлургия, 1989.
  25. Мержанов А.Г., Рогачев А.С., Мукасьян А.С., Хусид Б.И. // Физика горения и взрыва. 1990. Т. 26. № 1. С. 110.
  26. Bellen P., Kumar K.C.H., Wollants P. // Intern. J. Mater. Res. 1996. V. 87. № 12. P. 972; https://doi.org/10.1515/ijmr-1996-871207
  27. Kumar K.C.H., Ansara I., Wollants P., Delaey L. // Ibid. № 8. P. 666; https://doi.org/10.1515/ijmr-1996-870811

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (792KB)
3.

Download (103KB)
4.

Download (766KB)
5.

Download (635KB)
6.

Download (41KB)
7.

Download (1MB)

Copyright (c) 2023 Б.С. Сеплярский, Р.А. Кочетков, Т.Г. Лисина, Н.И. Абзалов, Д.С. Васильев