4,7-бис(октилокси)-3-(хинолин-2-илметилен)изоиндолин-1-он и его борфторидный комплекс. синтез и спектрально-люминесцентные свойства

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Взаимодействием 3,6-бис(октилокси)фталонитрила с бутилатом лития в бутаноле с последующей обработкой соляной кислотой получен 4,7-бис(октилокси)изоиндолин-1,3-дион. Его конденсация с хинальдином в присутствии оксида цинка приводит к образованию ( E,Z )-4,7-бис(октилокси)-3-(хинолин-2-илметилен)изоиндолин-1-она, обработкой которого BF3·Et2O в присутствии триэтиламина в толуоле получен новый несимметричный аналог BODIPY - ( Z )-2-(дифторборил)-4,7-бис(октилокси)-3(хинолин-2-илметилен)изоиндолин-1-он. Комплекс имеет стоксов сдвиг 25 нм и высокий относительный квантовый выход флуоресценции (0.68). Для подтверждения экспериментальных данных выполнены квантово-химические расчеты.

Об авторах

А. А. Набасов

Ивановский государственный химико-технологический университет

Email: kolosaner@mail.ru

Т. А. Румянцева

Ивановский государственный химико-технологический университет

В. В. Александрийский

Ивановский государственный химико-технологический университет

Н. Е. Галанин

Ивановский государственный химико-технологический университет

Список литературы

  1. Ziessel R., Ulrich G., Harriman A. // New J. Chem. 2007. Vol. 31. N 4. P. 496. doi: 10.1039/B617972J
  2. Loudet A., Burgess K. // Chem. Rev. 2007. Vol. 107. N 11. P. 4891-4932. doi: 10.1021/cr078381n
  3. Schmitt A., Hinkeldey B., Wild M., Jung G. // J. Fluoresc. 2009. Vol. 19. N 4. P. 755-758. doi: 10.1007/s10895-008-0446-7
  4. Молчанов Е.Е., Марфин Ю.С., Ксенофонтов А.А., Румянцев Е.В. // Изв. вузов. Сер. хим. и хим. технол. 2019. Т. 62. № 12. С. 13. doi: 10.6060/ivkkt.20196212.6017.
  5. Parhi A.K., Kung M.-P., Ploessl K., Kung H.F. // Tetrahedron Lett. 2008. Vol. 49. N 21. P. 3395. doi: 10.1016/j.tetlet.2008.03.130
  6. Wang H.-Q., Ye J.-T., Zhang Y., Zhao Y.-Y., Qiu Y.-Q. // J. Mater. Chem. (C). 2019. Vol. 7. N 25. P. 7531. doi: 10.1039/C9TC01750J
  7. Squeo B.M., Ganzer L., Virgili T., Pasini M. // Molecules. 2021. Vol. 26. N 1. Article no. 153. doi: 10.3390/molecules26010153
  8. Raveendran A.V., Sankeerthana P.A., Jayaraj A., Chinna Ayya Swamy P. // Res. Chem. 2022. Vol. 4. Article no. 100297. doi: 10.1016/j.rechem.2022.100297
  9. Malacarne M.C., Gariboldi M.B., Caruso E. // Int. J. Mol. Sci. 2022. Vol. 23. N 17. Article no. 10198. doi: 10.3390/ijms231710198
  10. Liu H., Lu H., Zhou Z., Shimizu S., Li Z., Kobayashi N., Shen Z. // Chem. Commun. 2015. Vol. 51. N 9. P. 1713. doi: 10.1039/C4CC06704E
  11. Wu Y., Lu H., Wang S., Li Z., Shen Z. // J. Mater. Chem. (C). 2015. Vol. 3. N 47. P. 12281. doi: 10.1039/c5tc03084f
  12. Yu C., Fang X., Wu Q., Jiao L., Sun L., Li Z., So P.-K., Wong W.-Y., Hao E. // Org. Lett. 2020. Vol. 22. N 12. P. 4588. doi: 10.1021/acs.orglett.0c00940
  13. Zhang X.F., Zhang G.Q., Zhu J. // J. Fluoresc. 2019. Vol. 29. N 1. P. 407. doi: 10.1007/s10895-019-02349-5
  14. Yue J., Wang N., Wang J., Tao Y., Wang H., Liu J., Zhang J., Jiao J., Zhao W. // Anal. Meth. 2021. Vol. 13. N 26. P. 2908. doi: 10.1039/D1AY00740H
  15. Cao T., Gong D., Zheng L., Wang J., Qian J., Liu W., Cao Y., Iqbal K., Qin W., Iqbal A. // Anal. Chim. Acta. 2019. Vol. 1078. P. 168. doi: 10.1016/j.aca.2019.06.033
  16. He H., Lo P.-C., Yeung S.-L., Fong W.-P., Ng D.K.P. // Chem. Commun. 2011. Vol. 47. N 16. P. 4748. doi: 10.1039/C1CC10727E
  17. Gut A., Ciejka J., Makuszewski J., Majewska I., Brela M., Łapok Ł. // Spectrochim. Acta (A). 2022. Vol. 271. Article no. 120898. doi: 10.1016/j.saa.2022.120898
  18. Duran-Sampedro G., Agarrabeitia A.R., Garcia-Moreno I., Gartzia-Rivero L., de la Moya S., Bañuelos J., López-Arbeloa Í., Ortiz M.J. // Chem. Commun. 2015, Vol. 51. N 57. P. 11382. doi: 10.1039/C5CC03408F
  19. Zhou Y., Xiao Y., Li D., Fu M., Qian X. // J. Org. Chem. 2008. Vol. 73. N 4. P. 1571. doi: 10.1021/jo702265x
  20. Nabasov A.A., Koptyaev A.I., Usoltsev S.D., Rumyantseva T.A., Galanin N.E. // Macroheterocycles. 2022. Vol. 15. N 2. P. 128. doi: 10.6060/mhc224262g
  21. Nabasov A.A., Rumyantseva T.A., Koptyaev A.I., Galanin N.E. // Dyes Pigm. 2023. Vol. 219. Article no. 111523. doi: 10.1016/j.dyepig.2023.111523
  22. Галанин Н.Е., Шапошников Г.П. // ЖОХ. 2012. Т. 82. № 10. С. 1736
  23. Galanin N.E., Shaposhnikov G.P. // Russ. J. Gen. Chem. 2012. Vol. 82. N 10. P. 1734. doi: 10.1134/S1070363212100179
  24. Brouwer A.M. // Pure Appl. Chem. 2011. Vol. 83. N 12. P. 2213. doi: 10.1351/PAC-REP-10-09-31
  25. Suzuki K., Kobayashi A., Kaneko S., Takehira K., Yoshihara T., Ishida H., Shiina Y., Oishi S., Tobita S. // Phys. Chem. Chem. Phys. 2009. Vol. 11. N 42. P. 9850. doi: 10.1039/B912178A
  26. Becke A.D. // J. Chem. Phys. 1993. Vol. 98. N 7. P. 5648. doi: 10.1063/1.464913
  27. Rappoport D., Furche F. // J. Chem. Phys. 2010. Vol. 133. N 13. Article no. 134105. doi: 10.1063/1.3484283
  28. Granovsky A.A. Firefly, V. 8.2.0. http://classic.chem.msu.su/gran/gamess/index.html
  29. Andrienko G.A. Chemcraft, V.1.8. http://www.chemcraftprog.com

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023