Прочные сферические композиты V2O5/TiO2–SiO2, полученные темплатным синтезом в комбинации с золь-гель методом

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Настоящее исследование посвящено получению прочных сферических композиционных материалов V2O5/TiO2-SiO2 комбинированным методом, включающим темплатный и золь-гель синтез. Установлены состав, размер и форма коллоидных частиц в бутанольном золе с тетрабутоксититаном и тетраэтоксисиланом, а также физико-химические процессы, приводящие к упрочнению сферических агломератов, полученных с использованием анионита гелевой структуры. Методами электрофореза, малоуглового рентгеновского рассеяния, вискозиметрии показано присутствие в золе положительно заряженных коллоидных частиц линзообразной и цилиндрической формы, размер которых при стабилизации золя достигает 53 Å. Поглощение золя анионитом в ванадиевой форме происходит за счет выравнивания осмотического давления в системе анионит/золь. Получены композиты сферической формы диаметром 300 мкм. Методом РФА показано, что композиты состоят из V2O5 ромбической структуры, TiO2 со структурой анатаза и аморфного диоксида кремния. Взаимодействие на границе раздела фаз V2O5 с TiO2 и SiO2, приводящее к упрочнению сферы композита V2O5/TiO2-SiO2, доказано методами ИК- и КР-спектроскопии. Полученные результаты могут быть использованы для синтеза оксидных композитов МхOy/TiO2-SiO2 со сферической формой агломератов.

Об авторах

С. А. Кузнецова

Национальный исследовательский Томский государственный университет

Автор, ответственный за переписку.
Email: katy20.05.2004@mail.ru
Россия, пр-т Ленина, 36, Томск, 634050

О. С. Халипова

Национальный исследовательский Томский государственный университет

Email: katy20.05.2004@mail.ru
Россия, пр-т Ленина, 36, Томск, 634050

А. Н. Шамсутдинова

Национальный исследовательский Томский государственный университет

Email: katy20.05.2004@mail.ru
Россия, пр-т Ленина, 36, Томск, 634050

Список литературы

  1. Wiroonpochit P., Boonmee P., Kerdlap W. et al. // Constr. Build. Mater. 2022. V. 353. № 24. P. 129081. https://doi.org/10.1016/j.conbuildmat.2022.129081
  2. Zeng De-W., Peng S., Chen Ch. et al. // Int. J. Hydrogen Energy. 2016. V. 41. № 48. P. 22711. https://doi.org/10.1016/j.ijhydene.2016.09.180
  3. Dorosheva I.B., Valeeva A.A., Rempel A.A. et al. // Inorg. Mater. 2021. V. 57. P. 503. https://doi.org/10.1134/S0020168521050022
  4. Tkachenko I.A., Marchenko Yu.V., Vasilyeva M.S. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1339. https://doi.org/10.1134/S0036023622090169
  5. Zhongmei D., Wenheng J., Weihong X. // J. Membr. Sci. 2011. V. 373. № 1–2. P. 167. https://doi.org/10.1016/j.memsci.2011.03.001
  6. Ni J., Si J., Lan T. et al. // Fuel. 2024. V. 356. P. 129613. https://doi.org/10.1016/j.fuel.2023.129613
  7. Bartik A., Fuchs J., Pacholik G. // Fuel Process. Technol. 2022. V. 237. P. 107402. https://doi.org/10.1016/j.fuproc.2022.107402
  8. Oviatt Jr. H.W., Shea K.J., Small J.H. // Chem. Mater. 1993. V. 5. P. 943. https://doi.org/10.1021/cm00031a012
  9. Lu Y., Cao G., Kale R.P. et al. // Chem. Mater. 1999. V. 11. P. 1223. https://doi.org/10.1021/cm980517y
  10. Vacassy R., Flatt R.J., Hofmann H. // J. Colloid Interface Sci. 2000. V. 227. P. 302. https://doi.org/10.1006/jcis.2000.6860
  11. Wei Q., Wang F., Nie Z.-R. et al. // J. Phys. Chem. B. 2008. V. 112. P. 9354. https://doi.org/10.1021/jp711573f
  12. Beck J.S., Vartuli J.C., Roth W.J. et al. // J. Am. Chem. Soc. 1992. V. 114. P. 10834. https://doi.org/10.1021/ja00053a020
  13. Козулин А.А., Скрипнях Е.Г., Скрипнях В.А. // Изв. вузов. Сер. Физика. 2012. Т. 55. № 7. С. 81.
  14. Takano Y., Ozawa T., Yoshinaka M. et al. // J. Mater. Synth. Process. 1999. V. 7. № 2. P. 107. https://doi.org/10.1023/A:1021869714265
  15. Kozlov G.V., Dolbin I.V., Magomedov Gus.M. // Glass Phys. Chem. 2023. V. 49. P. 402. https://doi.org/10.1134/S1087659622601009
  16. Kuznetsova S.A., Khalipova O.S., Lisitsa K.V. et al. // Nanosyst.: Phys. Chem. Math. 2021. V. 12. № 2. P. 232. https://doi.org/10.17586/2220-8054-2021-12-2-232-245
  17. Kuznetsova S.A., Brichkov A.S., Lisitsa K.V. et. al. //Russ. J. Appl. Chem. 2019. V. 92. № 2. P. 171. https://doi.org/10.1134/S1070427219020010
  18. Kuznetsova S.A., Khalipova O.S., Khasanov V.V. et al. // Appl. Mater. Today. 2022. V. 29. P. 101655. https://doi.org/10.1016/j.apmt.2022.101655
  19. Jiaguo Yu., Xiujian Zh., Jimmy C.Yu. // J. Mater. Sci. Lett. 2001. V. 20. P. 1745. https://doi.org/10.1023/A:1012458411717
  20. Wang X., Wu G., Zhou B., Shen J. // Coat. Materi. 2012. V. 6. № 1. P. 76. https://doi.org/10.3390/ma6010076
  21. Alférez F.L., Olaya J.J., Bautista J.H. // Boletín de la Sociedad Española de Cerámica y Vidrio. 2018. V. 57. № 5. P. 195. https://doi.org/10.1016/j.bsecv.2018.02.001
  22. Zheng Jin-Yu, Pang Jie-Bin, Qiu Kun-Yuan, Wei Y. // Microporous Mesoporous Mater. 2001. V. 49. P. 189. https://doi.org/10.1016/s1387-1811(01)00417-6
  23. Zhangwen X., Jun Y., Kai W. et al. // Ceram. Int. 2022. V. 48. № 7. P. 9114. https://doi.org/10.1016/j.ceramint.2021.12.096
  24. Ivicheva S.N., Ovsyannikov N.A., Lysenkov A.S. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1908. https://doi.org/10.1134/S0036023622601489
  25. Tursunov F. // Universum: chemistry and biology. 2023. V. 112. P. 56. https://doi.org/10.32743/UniChem.2023.112.10.16043
  26. Zhang Y., Wu Y., Chen M., Wu L. // Colloids Surf., A: Physicochem. Eng. Aspects. 2010. V. 353. P. 216. https://doi.org/10.1016/j.colsurfa.2009.11.016
  27. Huang G., Guo P., Wang J. et al. // Chem. Eng. J. 2020. V. 384. P. 123313. https://doi.org/10.1016/j.cej.2019.123313
  28. Alrammouza R., Lazerges M., Pironon J. et al. // Sens. Actuators, A: Phys. 2021. V. 332. P. 113179. https://doi.org/10.1016/j.sna.2021.113179
  29. Yanlong Yu., Hai Ming, Danfeng He et al. // J. Environ. Chem. Eng. 2023. V. 11. P. 111243. https://doi.org/10.1016/j.jece.2023.111243
  30. Manalastas-Cantos K., Konarev P.V., Hajizadeh N.R. et al. // J. Appl. Cryst. 2021. V. 54. P. 343. https://doi.org/10.1107/S1600576720013412
  31. Гринева О.В. // Журн. структур. химии. 2007. Т. 48. № 4. С. 802.
  32. Танасюк Д.А. // Успехи в химии и хим. технологии. 2014. Т. 28. № 6. С. 111.
  33. Айлер Р. Химия кремнезема: в 2 ч. пер. с англ. М.: Мир, 1982. Ч. 2. 1127 с.
  34. Fathimah S.S., Rao P.P., Vineetha J. et al. // Dalton Trans. 2014. V. 43. P. 15851. https://doi.org/10.1039/c4dt01788a
  35. Aureliano M., Gândara R.C. // J. Inorg. Biochem. 2005. V. 99. № 5. Р. 979. https://doi.org/10.1016/j.jinorgbio.2005.02.024
  36. Kristallov L.V., Koryakova O.V., Perelyaeva L.A. et al. // Russ. J. Inorg. Chem. 1987. V. 32. № 8. P. 1073.
  37. Кузнецова Ю.Л., Жиганшина Э.Р., Гущина К.С. и др. // Изв. вузов. Прикладная химия и биотехнология. 2023. Т. 13. № 1. С. 17. https://doi.org/10.21285/2227-2925-2023-13-1-17-27
  38. Андрианов К.А., Курашева Н.А., Лаврухин Б.Д., Кутейникова Л.И. // Высокомол. соед. 1975. Т. 14. № 11. С. 2450.
  39. Мурашкевич А.Н., Лавицкая А.С., Баранникова Т.И., Жарский И.М. // Журн. прикл. спектроскопии. 2008. Т. 75. № 5. С. 724.
  40. Wang J., Wang X., Liu X. et al. // J. Mol. Catal. A: Chem. 2015. V. 402. P. 1. https://doi.org/10.1016/j.molcata.2015.03.003
  41. Su Q., Huang C.K., Wang Y.J. et al. // Alloys Compd. 2009. V. 475. Р. 518.
  42. Wachs I.E. // Catal. Today. 1996. V. 27. № 3–4. P. 437. https://doi.org/10.1016/0920-5861(95)00203-0
  43. Christodoulakis A., Machli M., Lemonidou A.A. et al. // J. Catal. 2004. V. 222. № 2. P. 293. https://doi.org/10.1016/j.jcat.2003.10.007
  44. Banares M., Wachs I. // J. Raman Spectrosc. 2010. V. 33. № 5. P. 359. http://dx.doi.org/10.1002/jrs.866
  45. Busca G. // J. Raman Spectrosc. 2002. V. 33. № 5. P. 348. http://dx.doi.org/10.1002/jrs.867
  46. Went G.T., Leu L.-J., Bell A.T. // J. Catal. 1992. V. 134. № 2. P. 479. https://doi.org/10.1016/0021-9517(92)90336-G
  47. Беликова С.Е. Водоподготовка: Справочник. М.: Аква-Терм, 2007. 240 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024