Synthesis, crystal structure and thermodynamic properties of Ca3Y2Ge3O12 germanate

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Orthogermanate Ca3Y2Ge3O12 has been prepared by solid-phase method from CaCO3, Y2O3 and GeO2 by firing in air at a temperature of 1773 K. Using X-ray diffraction, its crystal structure was clarified (sp. gr. Ia3¯d, a =12.80255(14) Å, V = 2098.34(7) Å3). The high-temperature heat capacity of oxide compound has been determined in the temperature range 320–1000 K by differential scanning calorimetry and the experimental data have been used to evaluate thermodynamic properties of Ca3Y2Ge3O12.

Толық мәтін

Рұқсат жабық

Авторлар туралы

L. Denisova

Siberian Federal University

Хат алмасуға жауапты Автор.
Email: ldenisova@sfu-kras.ru
Ресей, Krasnoyarsk, 660041

D. Belokopytova

Siberian Federal University

Email: ldenisova@sfu-kras.ru
Ресей, Krasnoyarsk, 660041

Yu. Kargin

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: ldenisova@sfu-kras.ru
Ресей, Moscow, 119991

G. Vasil’ev

Siberian Federal University

Email: ldenisova@sfu-kras.ru
Ресей, Krasnoyarsk, 660041

V. Denisov

Siberian Federal University

Email: ldenisova@sfu-kras.ru
Ресей, Krasnoyarsk, 660041

V. Beletskii

Siberian Federal University

Email: ldenisova@sfu-kras.ru
Ресей, Krasnoyarsk, 660041

Әдебиет тізімі

  1. Piccinelli F., Lausi A., Bettinelli M. // J. Solid State Chem. 2013. V. 205. P. 190. https://doi.org/10.1016/j.jssc.2013.07.021
  2. Baklanova Y.V., Enyashin A.N., Maksimova L.G. et al. // Ceram. Int. 2018. V. 44. P. 6959. https://doi.org/10.1016/j.ceramint.2018.01.128
  3. Tang Y., Zhang Z., Li J. et al. // J. Eur. Ceram. Soc. 2020. V. 40. P. 3989. https://doi.org/10.1016/j.eurceramsoc.2020.04.052
  4. Mao N., Liu S., Song Z. et al. // J. Alloys Compd. 2021. V. 863. P. 158699. https://doi.org/10.1016/j.jallcom.2021.158699
  5. Ji C., Huang Z., Tian X. et al. // J. Lumin. 2021. V. 232. P. 117775. https://doi.org/10.1016/j.jlumin.2020.117775
  6. Li Y., Shao Y., Zhang W et al. // J.Am. Ceram. Soc. 2021. V. 104. P. 6299. https://doi.org/10.1111/jace.18015
  7. Cui J., Cao L., Wang X. et al. // J. Lumin. 2021. V. 237. P. 118170. https://doi.org/10.1016/j.jlumin.2021.118170
  8. Cui J., Zheng Y., Wang Z. et al. // Mater. Adv. 2022. V. 3. P. 2772. https://doi.org/10.1039/d2ma00009a
  9. Леонидов И.И. // Тез. IX Национальной кристаллохимической конф. Суздаль, 4–8 июня 2018. М.: Граница, 2018. С. 69.
  10. Fiquet G., Gillet P., Richet P. et al. // Phys. Chem. Miner. 1992. V. 18. P. 469. https://doi.org/10.1007/BF00200970
  11. Shuchunov A.N., Gorshkov O.N., Smirnova N.N. et al. // J. Chem. Thermodyn. 2014. V. 78. P. 58. https://doi.org/10.1016/j.jct.2014.06.019
  12. Денисова Л.Т., Молокеев М.С., Каргин Ю.Ф. и др. // Неорган. материалы. 2022. Т. 58. № 4. С. 432. https://doi.org/10.31857/S0002337X22040030
  13. Isaacs I. // Experientia. 1969. V. 25. P. 239. https://doi.org/10.1007/BF02034364
  14. Lévy D., Barbier J. // Acta Crystallogr. Sect. С. 1999. V. 56. P. 1611.
  15. Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. // Неорган. материалы. 2017. Т. 53. № 1. С. 71. https://doi.org/10.7868/S0002337X17010043
  16. Денисова Л.Т., Каргин Ю.Ф., Денисов В.М. // Неорган. материалы. 2017. Т. 53. № 9. С. 975. https://doi.org/10.7868/S0002337X17090111
  17. Maier C.G., Kelley K.K. // J.Am. Chem. Soc. 1932. V. 54. № 8. P. 3243. https://doi.org/10.1021/ja01347a029
  18. Leitner J., Chuchvalec P., Sedmidubský D. et al. // Thermochim. Acta. 2003. V. 395. P. 27.
  19. Leitner J., Voňka P., Sedmidubský D., Svoboda P. // Thermochim. Acta. 2010. V. 497. P. 7. https://doi.org/10.1016/j.tca.2009.08.002
  20. Кубашевский О., Олкокк С.Б. Металлургическая термохимия. М.: Металлургия, 1982. 392 с.
  21. Spencer P.J. // Thermochim. Acta. 1998. V. 314. P. 1. https://doi.org/10.1016/S0040-6031(97)00469-3
  22. Кумок В.Н. // Прямые и обратные задачи химической термодинамики. Новосибирск: Наука, 1987. С. 108.
  23. Mostafa A.T.M.G., Eakman J.M., Montoya M.M., Yarbro S.L. // Ind. Eng. Chem. Res. 1996. V. 35. P. 343. https://doi.org/10.1021/ie9501485
  24. Успенская И.А., Иванов А.С., Константинова Н.М., Куценок И.Б. // Журн. физ. химии. 2022. Т. 96. № 9. С. 1302. https://doi.org/10.31857/S0044453722090291
  25. Третьяков Ю.Д. Твердофазные реакции. М.: Химия, 1967. 451 с.
  26. Morss L.R., Konings R.J.M. // Binary rare earth oxides. N.Y.: Kluwer Academ. Publishers., 2004. P. 163.
  27. Осина Е.Л. // Теплофизика высоких температур. 2017. Т. 55. № 2. С. 223.
  28. Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. // Журн. неорган. химии. 2018. Т. 63. № 3. С. 338. https://doi.org/10.7868/S0044457X1803011X

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Effect of temperature on the molar heat capacity of Ca3Y2Ge3O12: 1 – experiment, 2 – calculation of НК2, 3 – calculation of НК1, 4 – calculation by the group contribution method, 5 – calculation of НК3

Жүктеу (83KB)
3. Fig. 2. Temperature dependences of the molar heat capacity of germanates Ca3Y2Ge3O12 (1), CaY2Ge4O12 (2) and CaY2Ge3O10 (3)

Жүктеу (104KB)

© Russian Academy of Sciences, 2024