Comparative analysis of chromatograph mass spectrometric ways of detecting impurities in a concentrated hydrogen peroxide–rocket fuel oxidizer

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In rocket launchers, where operational safety and high reliability are key factors, environmentally friendly propellants, in particular, hydrogen peroxide solutions, are widely used as fuel. The authors study the composition of highly concentrated hydrogen peroxide as an oxidizer for liquid rocket fuels. Different areas of using chromatograph mass spectrometry in the aerospace industry are considered. A comparative analysis is performed for ways of detecting and measuring impurities in highly concentrated hydrogen peroxide by means of chromatograph mass spectrometry.

全文:

受限制的访问

作者简介

Yu. Samukhina

Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences (IPCE RAS)

编辑信件的主要联系方式.
Email: juliesam2008@mail.ru
俄罗斯联邦, 31-4, Leninsky prospect, Moscow, 119071

A. Glushko

Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences (IPCE RAS); Rocket Fuel Component Supply Center, a Branch of Ground Space Infrastructure Facilities Operation Center

Email: juliesam2008@mail.ru
俄罗斯联邦, 31-4, Leninsky prospect, Moscow, 119071; Moscow, 129110

A. Buryak

Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences (IPCE RAS)

Email: juliesam2008@mail.ru
俄罗斯联邦, 31-4, Leninsky prospect, Moscow, 119071

参考

  1. Schneider S., Hawkins T., Ahmed Y., et al. // Angew. Chem. 2011. V. 50. P. 5886.
  2. Dankanich. J., Liou L, Alexander L. L. // AERO. 2010. P. 5446769.
  3. Edwards T. // J. Propul. Power. 2003. V. 19. P. 1089.
  4. De Iaco Veris A. // Fundamental Concepts of Liquid-Propellant Rocket Engines. Springer. Cham. 2021. P. 1.
  5. Remissa I., Jabri H., Hairch Y., et al. // Eurasian Chem.-Technol. J. 2023. V. 25. P. 3.
  6. Nosseir A. E.S., Cervone A., Pasini A. // Aerospace. 2021. V. 8. № 1. P. 20.
  7. Bhosale V. K., Jeong J., Kwon S., et al. // Combustion and Flame. 2020. V. 214. P. 426.
  8. Rarata G., Florczuk W., Smetek J. // J. of Aerospace Science and Technology. 2016. V. 1. Р. 42.
  9. Gramatyka J., Paszkiewicz P., Grabowski D., et al. // Aerospace. 2022. V. 9. Р. 297.
  10. Whitmore S. A., Armstrong I. W., Heiner M. C., et al. // Aeronautics and Aerospace Open Access J. 2018. V. 2. № 6. Р. 334.
  11. Kopacz W., Okninski A., Kasztankiewicz A., et al. // FirePhysChem. 2022. V. 2. № 1. P. 56.
  12. Rhodes B. L., Ronney P. D. // J. of Propulsion and Power. 2019. V. 35. № 3. P. 595.
  13. Emerce N. B., Kokal U., Yıldız U. C., et al. //Applied Catalysis A: General. 2024. V. 670. Р. 119516.
  14. Yang Y., Ye Y., Shen R. // Catalysts. 2024. V. 14. Р. 39.
  15. Kang S. // Acta Astronaut. 2023. V. 205. Р. 47.
  16. Shahrin M. S.N., Othman N., Nik Mohd N. A.R., et al. // CFD Letters. 2021. V. 13. № 12. Р. 1.
  17. Whitmore S. A., Martinez C. J., Merkley D. P. // Aeronautics and Aerospace Open Access Journal. 2018. V. 2. № 6. Р. 356.
  18. Harikumar P. S., Litty Josephand Dhanya A. // J. of Environmental Engineering & Ecological Science. 2013. P. 1.
  19. Trushlyakov V. I., Urbansky V. A., Yudintsev V. V. // J. of Spacecraft and Rockets. 2021. Vol. 58. № 3. Р. 685.
  20. Nimmerfroh N., Walzer E., Brossmer C. // Eur. Space Agency. 2001. V. 484. P. 77.
  21. Buryak A. K., Serdyuk T. M. // Russ. Chem. Rev. 2013. V. 82. № 4. P. 369.
  22. Schneider S., Hawkins T., Ahmed Y., et al. // Angew. Chem. Int. Ed. 2011. V. 50. P. 5886.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Chromatogram of mass distribution in the range 20–200 m/z in the positive spectrum. For peak designations see text.

下载 (75KB)
3. Fig. 2. Chromatogram of mass distribution in the range 200–700 m/z in the positive spectrum. For peak designations see text.

下载 (110KB)
4. Fig. 3. MALDI mass spectrum in negative ion recording mode. For peak designations see text.

下载 (80KB)

版权所有 © Russian Academy of Sciences, 2025