Effect of a Geometric Potential on the Eigenfunction and Eigenvalue of the Energy of State in a Twisted Graphene Nanoribbon
- 作者: Sadykov N.R.1, Petrova Y.A.1, Pilipenko I.A.1, Khrabrov R.S.1, Skryabin S.N.1
-
隶属关系:
- Snezhinsky Institute of Physics and Technology, National Research Nuclear University MEPhI
- 期: 卷 97, 编号 2 (2023)
- 页面: 252-257
- 栏目: ФИЗИЧЕСКАЯ ХИМИЯ НАНОКЛАСТЕРОВ, СУПРАМОЛЕКУЛЯРНЫХ СТРУКТУР И НАНОМАТЕРИАЛОВ
- ##submission.dateSubmitted##: 27.02.2025
- ##submission.datePublished##: 01.02.2023
- URL: https://vestnikugrasu.org/0044-4537/article/view/668844
- DOI: https://doi.org/10.31857/S004445372302022X
- EDN: https://elibrary.ru/ELHIFX
- ID: 668844
如何引用文章
详细
An expression is obtained for an effective geometric potential based on a coordinate system for a nanoribbon twisted in the form of a helicoid. The effective geometric potential for a Schrödinger equation is used to study a graphene nanoribbon of finite length with “armchair” edges under the action of an external electric field parallel to them. Solutions are calculated for the energy levels and wave functions of electrons in the vicinity of the Dirac point. It is shown there is only one state in the transverse direction.
作者简介
N. Sadykov
Snezhinsky Institute of Physics and Technology, National Research Nuclear University MEPhI
Email: n.r.sadykov@rambler.ru
456776, Snezhinsk, Russia
Yu. Petrova
Snezhinsky Institute of Physics and Technology, National Research Nuclear University MEPhI
Email: n.r.sadykov@rambler.ru
456776, Snezhinsk, Russia
I. Pilipenko
Snezhinsky Institute of Physics and Technology, National Research Nuclear University MEPhI
Email: n.r.sadykov@rambler.ru
456776, Snezhinsk, Russia
R. Khrabrov
Snezhinsky Institute of Physics and Technology, National Research Nuclear University MEPhI
Email: n.r.sadykov@rambler.ru
456776, Snezhinsk, Russia
S. Skryabin
Snezhinsky Institute of Physics and Technology, National Research Nuclear University MEPhI
编辑信件的主要联系方式.
Email: n.r.sadykov@rambler.ru
456776, Snezhinsk, Russia
参考
- Jensen H., Koppe H. // Ann. Phys. 1971. V. 63. № 2. P. 586. https://doi.org/10.1016/0003-4916(71)90031-5
- Costa R.C.T. // Phys. Rev. A. 1981. V. 23. № 4. P. 1982. https://doi.org/10.1103/PhysRevA.23.1982
- Cantele G., Ninno D., Iadonisi G. // Phys. Rev. B. 2000. V. 61. P. 3730. https://doi.org/10.1103/PhysRevB.61.13730
- Aoki H., Koshino M., Takeda D. et al. // Ibid. 2001. V. 65. P. 035102. https://doi.org/10.1103/PhysRevB.65.035102
- Encinosa M., Mott L. // Phys. Rev. A. 2003. V. 68. P. 014102. https://doi.org/10.1103/PhysRevA.68.014102
- Gravesen J., Willatzen M. // Ibid. 2005. V. 72. P. 032108. https://doi.org/10.1103/PhysRevA.72.032108
- Marchi A., Reggiani S., Rudan M., Bertoni A. // Phys. Rev. B. 2005. V. 72. P. 035403. https://doi.org/10.1103/PhysRevB.72.035403
- Ведерников А.И., Чаплик А.В. // ЖЭТФ. 2000. Т. 117. № 2. С. 449. http://www.jetp.ac.ru/cgi-bin/r/index/r/117/2/p449?a=list.
- Ortix C., van den Brink J. // Phys. Rev. B. 2010. V. 81. P. 165419. https://doi.org/10.1103/PhysRevB.81.165419
- Садыков Н.Р., Юдина Н.В. // Журн. технич. физики. 2020. Т. 90. Вып. 3. С. 387. https://doi.org/10.21883/JTF.2020.03.48921.62-19
- Atanasov V., Saxena A. // Phys. Rev.B. 2015. B. V. 92. P. 035440. https://doi.org/journals.aps.org/prb/abstract/10.1103/ PhysRevB.92.035440.
- Mohanty N., Moore D., Xu Z. et al. // Nat. Commun. 2012. V. 3. P. 844. https://doi.org/10.1038/ncomms1834
- Dandoloff R., Truong T.T. // Phys. Lett. A. 2004. V. 325. P. 233. https://doi.org/10.1016/j.physleta.2004.03.050
- Atanasov V., Dandoloff R., Saxena A. // Phys. Rev. B. 2009. V. 79. P. 033404. https://doi.org/10.1103/PhysRevB.79.033404
- Burgess M., Jensen B. // Phys. Rev. A. 1993. V. 48. P. 1861. https://doi.org/10.1103/PhysRevA.48.1861
- Atanasov V., Saxena A. // Phys. Rev. B. 2010. V. 81. P. 205409. https://doi.org/10.1103/PhysRevB.81.205409
- Joglekar Y.N. and Saxena A. // Ibid. 2009. V. 80. P. 153405-4. https://doi.org/10.1103/PhysRevB.80.153405
- Atanasov V., Saxena A.// J. Phys. Condens. Matter. 2011. V. 23. P. 175301.
- Yang S.H. // Appl. Phys. Lett. 2020. V. 116. P. 120502 .
- Yang S.H., Naaman R., Paltiel Y., Parkin S.S.P. // Nat. Rev. Phys. 2021. V. 3. P. 328.
- Michaeli K., Kantor-Uriel N., Naamanm R., and Waldeck D.H.// Chem. Soc. Rev. 2016. V. 45. P. 6478
- Naaman R. and Waldeck D.H.// Annu. Rev. Phys. Chem. 2015. V. 66. P. 263.
- D’yachkova P.N. and D’yachkov E.P. // Appl. Phys. Lett. 2022. V. 120. P. 173101. https://doi.org/10.1063/5.008690
- Kiricsi I., Fudala A., Konya et al. // Appl. Catal. 2000. A. 203. L. 1.
- De Crescenzi M., Castrucci P., Scarselli M. et al. // Appl. Phys. Lett. 2005. V. 86. P. 231901.
- Morata A., Pacios M., Gadea G. et al. // Nat. Commun. 2018. V. 9. P. 4759.
- Wu H., Chan G., and Choi J.W. // Nat. Nanotechnol. 2012. V. 7. P. 310.
- Chan C.K., Peng H., Liu G. et al. // Ibid. 2008. V. 3. P. 31.
- Sadykov N.R., Muratov E.T., Pilipenko I.A., Aporoski A.V. // Physica E: Low-dimensional Systems and Nanostructures. 2020. V. 120. P. 114071. https://doi.org/10.1016/j.physe.2020.114071
- Dubrovin B.A., Novikov S.P., and Fomenko A.T. // Modern Geometry: Methods and Applications, 2nd ed. M.: Fizmatlit, 1986.
- Spivak M. A Comprehensive Introduction to Differential Geometry Publish or Perish, Boston, 1999.
- Sadykov N.R. Quantum Electronics. 1996. V. 26 (3). P. 271. http://iopscience.iop.org/1063-7818/26/3/A24.
- Будак Б.М., Самарский А.А., Тихонов А.Н. Сборник задач по математической физике. 4-е изд., испр. М.: ФИЗМАТЛИТ, 2004. 688 с. ISBN 5-9221-0311-3.
- Onipko A. and Malysheva L. // Phys. Status Solidi. 2017. V. 255. P. 1700248. https://doi.org/10.1002/pssb.201700248
- Boyd R.W. Nonlinear Optics. Academic Press, San Diego (2003).
- Landau L.D., Lifshitz E.M. Course of Theoretical Physics. V. 3: Quantum Mechanics: Non-Relativistic Theory, 4th ed. (Oxford Univ. Press, Oxford, 1980) M.: Nauka, 1989.
- Никифоров А.Ф., Уваров В.Б. Специальные функции математической физики. М.: Физматлит, 1978.
- Садыков Н.Р. // Теоретическая и математическая физика. 2014. Вып. 180. № 3. С. 368. https://doi.org/10.4213/tmf8642
