On the escape of the diffusing particle from the cavity

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The problem of escape of a Brownian particle from a cylindrical cavity through a hole on the surface of one of the cylinder ends is considered. Using the method of surface homogenization, a one-dimensional description of the process is proposed. The solution obtained with its help allows finding the average lifetime of a particle in such a cavity with any size of the hole. Its qualitative difference from the well-known solution for the mean lifetime of a particle diffusing in an isometric (sphere-like) cavity is that the previously obtained result depends only on the volume of the cavity while the solution found in this work depends both on the volume and on the length of the cylinder.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Zitserman

Joint Institute for High Temperatures, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: vz1941@mail.ru
Ресей, Moscow, 125412

Yu. Makhnovskii

A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: vz1941@mail.ru
Ресей, Moscow, 119991

Әдебиет тізімі

  1. Tartakovsky D.M., Dentz M. // Trans. Porous Media. 2019. V. 130. № 1. P. 105.
  2. Holcman D., Schuss Z. // J. Chem. Phys. 2005. V. 122. № 11. P. 4710.
  3. Berezhkovskii A.M., Barzykin A.V., Zitserman V.Yu. // J. Chem. Phys. 2009. V. 130. № 24. P. 5104.
  4. Schuss Z., Singer A., Holcman D. // Proc. Nat. Acad. Sci (USA). 2007. V. 104. № 41. P. 16098.
  5. Григорьев И.В., Махновский Ю.А., Бережковский А.М., Зицерман В.Ю. // Журн. физ. химии. 2003. Т. 77. № 8. С. 1426. [Grigor’ev I.V., Makhnovskii Y.A., Berezhkovskii A.M., Zitserman V.Y. // Russ. J. Phys. Chem. A. 2003. V. 77. № 8. P. 1277.]
  6. Hughes A., Faulkner C., Morris R.J., Tomkins M. // IEEE Trans. Mol. Biol. Multi-Scale Commun. 2021. V. 7. № 2. P. 89.
  7. Holcman D., Schuss Z. Stochastic Narrow Escape in Molecular and Cellular Biology. Berlin: Springer, 2015.
  8. Ward M.J., Keller J.B. // SIAM J. Appl. Math. 1993. V. 53. № 3. P. 770.
  9. Grigoriev I.V., Makhnovskii Y.A., Berezhkovskii A.M., Zitserman V.Y. // J. Chem. Phys. 2002. V. 116. № 22. P. 9574.
  10. Bénichou O., Voituriez R. // Phys. Rep. 2014. V. 539. № 4. P. 225.
  11. Grebenkov D.S., Oshanin G. // Phys. Chem. Chem. Phys. 2017. V. 19. № 4. P. 2723.
  12. Doi M., Xu X. // J. Phys. Chem. B. 2022. V. 126. № 33. P. 6171.
  13. Hill T L. // Proc. Nat. Acad. Sci (USA). 1975. V. 72. № 12. P. 4918.
  14. Berezhkovski A.M., Makhnovskii Yu.A., Monine M.I., et al. // J. Chem. Phys. 2004. V. 121. № 22. P. 11390.
  15. Махновский Ю.А., Бережковский А.М., Зицерман В.Ю. // Журн. физ. хим. 2006. Т. 80. № 7. С. 1. [Makhnovskii Y.A., Berezhkovskii A.M., Zitserman V.Y. // Russ. J. Phys. Chem. 2006. V. 80. № 7. P. 1129.]
  16. Berezhkovskii A.M., Monine M.I., Muratov C.B., Shvartsman S.Y. // J. Chem. Phys. 2006. V. 124. № 3. P. 6103.
  17. Гардинер К.В. Стохастические методы в естественных науках. М.: Мир, 1986.
  18. Понтрягин Л.С., Андронов А.А., Витт А.А. // ЖЭТФ. 1933. Т. 3. № 3. С. 165.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Illustration of formula (9). Dependences of the relative contribution of the time to reach the right boundary, x = L, during the lifetime of a particle diffusing in the interval (0, L), on the dimensionless length L/R for different values ​​of the parameter a/R, indicated in the legend to the figure.

Жүктеу (90KB)
3. Fig. 2. Dependences of the dimensionless lifetime of a particle, formula (7), (solid curves), the second term in this formula (dashed curves) and this term without taking into account the scale factor F(s) (dotted curves) on the dimensionless length L/R for different values ​​of the parameter a/R. The values ​​a/R=0.15 correspond to “thick” curves, and the values ​​a/R=0.3 correspond to “thin” curves.

Жүктеу (81KB)

© Russian Academy of Sciences, 2025