Adsorption of Cr(VI) by Nanosized Rutile under the Action of UV Radiation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

the properties of nanosized sorbents prepared by high-energy milling from microcrystalline powder of titanium dioxide of rutile modification have been studied. It was established that milling to an average crystallite size of ~30 nm and ultraviolet illumination significantly improved the sorption properties of rutile with respect to chromium compared with those of the starting material and the ability of Cr(VI) to be reduced to Cr(III) in its presence. The maximum removal of Cr(VI) from aqueous solutions with a concentration of 50 mg/L was achieved under UV illumination in an acetate buffer medium at pH 4–5 and a content of ground rutile of 16.7 g/L. A mechanism of adsorption was proposed.

Sobre autores

N. Pechishcheva

Institute of Metallurgy, Ural Branch, Russian Academy of Sciences

Email: pechischeva@gmail.com
620016, Yekaterinburg, Russia

D. Ordinartsev

Institute of Metallurgy, Ural Branch, Russian Academy of Sciences

Email: pechischeva@gmail.com
620016, Yekaterinburg, Russia

A. Valeeva

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: pechischeva@gmail.com
620108, Yekaterinburg, Russia; 620002, Yekaterinburg, Russia

P. Zaitseva

Institute of Metallurgy, Ural Branch, Russian Academy of Sciences

Email: pechischeva@gmail.com
620016, Yekaterinburg, Russia

A. Korobitsyna

Institute of Metallurgy, Ural Branch, Russian Academy of Sciences

Email: pechischeva@gmail.com
620016, Yekaterinburg, Russia

A. Sushnikova

Institute of Metallurgy, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: pechischeva@gmail.com
620016, Yekaterinburg, Russia; 620002, Yekaterinburg, Russia

A. Kim

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Email: pechischeva@gmail.com
620016, Yekaterinburg, Russia

K. Shunyaev

Institute of Metallurgy, Ural Branch, Russian Academy of Sciences

Email: pechischeva@gmail.com
620016, Yekaterinburg, Russia

A. Rempel

Institute of Metallurgy, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin

Autor responsável pela correspondência
Email: pechischeva@gmail.com
620016, Yekaterinburg, Russia; 620002, Yekaterinburg, Russia

Bibliografia

  1. Jegadeesan G., Al-Abed S.R., Sundaram V. et al. // Water Res. 2010. V. 44. P. 965. https://doi.org/10.1016/j.watres.2009.10.047
  2. Kuz'micheva G.M., Savinkina E.V., Obolenskaya L.N. et al. // Crystallogr. Rep. 2010. V. 55. P. 866. https://doi.org/10.1134/S1063774510050287
  3. Vidhya B., Ford A. // Nanosci. Nanotechnol. Lett. 2013. V. 5. P. 980. https://doi.org/10.1166/nnl.2013.1663
  4. Uzunova-Bujnova M., Dimitrov D., Radev D. et al. // Mater. Chem. Phys. 2008. V. 110. P. 291. https://doi.org/10.1016/j.matchemphys.2008.02.005
  5. Мельчакова О.В., Печищева Н.В., Коробицына А.Д. // Цветные металлы. 2019. № 1. С. 32. https://doi.org/10.17580/tsm.2019.01.05
  6. Ординарцев Д.П., Печищева Н.В., Валеева А.А. и др. // Журн. физ. химии. 2022. Т. 96. № 11 – в печати.
  7. Cheng Q., Wang C., Doudrick K. et al. // Appl. Catal. B. 2015. V. 176. P. 740. https://doi.org/10.1016/j.apcatb.2015.04.047
  8. Ma C.M., Shen Y.S., Lin P.H. // Int. J. Photoenergy. 2012. 381971. https://doi.org/10.1155/2012/381971
  9. Ku Y., Jung I.-L. // Wat. Res. 2001. V. 35. P. 135. https://doi.org/10.1016/s0043-1354(00)00098-1
  10. Zhang H., Bartlett R.J. // Environ. Sci. Technol. 1999. V. 33. P. 588. https://doi.org/10.1021/es980608w
  11. Fendorf S.E. // Geoderma. 1995. V. 67. P. 55. https://doi.org/10.1016/0016-7061(94)00062-f
  12. Wang Y., Peng C., Padilla-Ortega E. et al. // J. Environ. Chem. Eng. 2020. 104031. https://doi.org/10.1016/j.jece.2020.104031
  13. Zurek J.M., Paterson M.J. // J. Phys. Chem. A. 2012. V. 116. P. 5375. https://doi.org/10.1021/jp302300q
  14. Kirk A.D. // Comments Inorg. Chem. 1993. V. 14. P. 89. https://doi.org/10.1080/02603599308048658
  15. Morales-Pérez A.-A., García-Pérez R., Tabla-Vázquez C.-G. et al. // Topics in Catalysis. 2020. V. 64. P. 17. https://doi.org/10.1007/s11244-020-01346-4
  16. Tan Y., Lim Y.B., Altieri K.E. et al. // Atmos. Chem. Phys. 2012. V. 12. P. 801. https://doi.org/10.5194/acp-12-801-2012
  17. Moffat T.P., Latanision R.M., Ruf R.R. // Electrochim. Acta. 1995. V. 40. P. 1723. https://doi.org/10.1016/0013-4686(95)00015-7

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (98KB)
3.

Baixar (37KB)
4.

Baixar (105KB)

Declaração de direitos autorais © Н.В. Печищева, Д.П. Ординарцев, А.А. Валеева, П.В. Зайцева, А.Д. Коробицына, А.А. Сушникова, А.В. Ким, К.Ю. Шуняев, А.А. Ремпель, 2023