Оценка возможности загрязнения почв побочными продуктами пиролиза при внесении биоуглей
- Авторы: Смирнова Е.В.1, Гиниятуллин К.Г.1, Окунев Р.В.1
-
Учреждения:
- Казанский (Приволжский) федеральный университет
- Выпуск: № 3 (2025)
- Страницы: 421-432
- Раздел: ДЕГРАДАЦИЯ, ВОССТАНОВЛЕНИЕ И ОХРАНА ПОЧВ
- URL: https://vestnikugrasu.org/0032-180X/article/view/683366
- DOI: https://doi.org/10.31857/S0032180X25030071
- EDN: https://elibrary.ru/CKVOJA
- ID: 683366
Цитировать
Аннотация
Цель работы – изучение содержания и состава лабильных гидрофобных побочных продуктов пиролиза (липидной фракции), извлекаемых органическими растворителями из БУ, полученных из различных растительных материалов при разных температурах пиролиза. В исследованиях использовали шесть видов БУ, приготовленных из соломы кукурузы и проса, а также древесины ивы путем пиролиза до конечных температур 400 и 600°C (низко- и высокотемпературные – НТ/ БУ и ВТ/БУ соответственно). Показано, что все ВТ/БУ имеют существенно меньшее содержание липидной фракции (СЛФ) по сравнению с НТ/БУ: в пределах 0.16–0.46 и 0.54–3.38% от веса БУ соответственно. Полученные при более высоких температурах БУ характеризовались бὁльшим содержанием общего органического углерода (Собщ) с меньшей долей в нем органического углерода липидной фракции (СоргЛФ). Для качественной характеристики липидной фракции на основании УФ-ВИД спектров поглощения их экстрактов были рассчитаны показатели SUVA254 и Sr, отражающие степень ароматичности и молекулярные массы окрашенных растворимых органических соединений. На основании полученных результатов сделан вывод, что независимо от исходного сырья с увеличением конечной температуры пиролиза уменьшается степень ароматичности и молекулярная масса органических соединений, входящих в состав липидной фракции. С увеличением температуры пиролиза снижается общее содержание и доля полиядерных представителей полициклических ароматических углеводородов (ПАУ), которые являются наиболее опасными побочными продуктами из-за их высокой токсичности, канцерогенности и устойчивости к биодеградации. Установлено, что во всех НТ/БУ общее содержание ПАУ превышает предельно допустимый уровень (20 мг/кг), рекомендованный Международной инициативной группой по биоуглю, тогда как в ВТ/БУ суммарное содержание ПАУ было ниже данного значения. Сделан вывод о необходимости разработки общих стандартов качества БУ, производимых для внесения в почву, с учетом содержания в них гидрофобных побочных продуктов пиролиза, включая ПАУ, относящихся к опасным почвенным поллютантам.
Полный текст
Открыть статью на сайте журналаОб авторах
Е. В. Смирнова
Казанский (Приволжский) федеральный университет
Автор, ответственный за переписку.
Email: tutinkaz@mail.ru
ORCID iD: 0000-0002-3081-7615
Россия, ул. Кремлевская, 18, Казань, 420008
К. Г. Гиниятуллин
Казанский (Приволжский) федеральный университет
Email: tutinkaz@mail.ru
Россия, ул. Кремлевская, 18, Казань, 420008
Р. В. Окунев
Казанский (Приволжский) федеральный университет
Email: tutinkaz@mail.ru
Россия, ул. Кремлевская, 18, Казань, 420008
Список литературы
- Бойцова Л.В., Рижия Е.Я., Вертебный В.Е. Индивидуальные органические соединения дерново-подзолистой супесчаной почвы при внесении биоугля // Агрохимия. 2022. № 11. C. 26–32. https://doi.org/10.31857/S0002188122110035
- Глущенко Н.Н., Лобаева Т.А., Байтукалов Т.А., Богословская О.А., Ольховская И.П. Анализ показателей качества фитопрепаратов на основе жирных растительных масел // Фармация. 2005. № 3. С. 7–9.
- Дубровина И.А. Влияние биоугля на агрохимические показатели и ферментативную активность почв средней тайги Карелии // Почвоведение. 2021. № 12. С. 1523–1534. https://doi.org/10.31857/S0032180X21120054
- Евдокимов И.Н., Лосев А.П. Применение УФ-видимой абсорбционной спектроскопии для описания природных нефтей // Нефтегазовое дело. 2007. № 1. C. 1.
- Зиннатшина Л.В., Стрижакова Е.Р., Даньшина А.В. и др. Влияние сорбентов на скорость биоремедиации и свойства почвы, загрязненной смесью нефтепродуктов // Естественные и технические науки. 2018. № 9. https://doi.org/10.25633/ETN.2018.09.08
- Когут Б.М., Семенов В.М., Артемьева З.С., Данченко Н.Н. Дегумусирование и почвенная секвестрация углерода // Агрохимия. 2021. № 5. C. 3–13. https://doi.org/10.31857/S0002188121050070
- Копцик Г.Н. Современные подходы к ремедиации почв, загрязненных тяжелыми металлами (обзор литературы) // Почвоведение. 2014. № 7. С. 851–868. https://doi.org/10.7868/S0032180X14070077
- Малыхина Л.В., Шайдуллина И.А., Антонов Н.А., Сибгатова Д.И., Яппаров А.Х., Дегтярева И.А., Латыпова В.З., Гадиева Э.Ш. Применение новых биотехнологий при рекультивации черноземов со смешанным типом загрязнения // Георесурсы. 2016. Т. 18. № 2. С. 138–144. https://doi.org/10.18599/grs.18.2.12
- Пансю М., Готеру Ж. Анализ почвы. Справочник. Минералогические, органические и неорганические методы анализа / Gер. с англ. под ред. Панкратова Д.А. СПб.: ЦОП, Профессия, 2014. 800 с.
- Рижия Е.Я., Мухина И.М., Вертебный В.Е., Хорак Я., Конончук П.Ю., Хомяков Ю.В. Ферментативная активность и эмиссия закиси азота из дерново-подзолистой супесчаной почвы с биоуглем // Сельскохозяйственная биология. 2017. № 3. C. 464–470. https://doi.org/10.15389/agrobiology.2017.3.464rus
- Синицын А.П., Гусаков А.В., Черноглазов В.М. Биоконверсия лигноцеллюлозных материалов. М.: Изд-во Моск. ун-та, 1995. 224 с.
- Смирнова Е.В., Гиниятуллин К.Г., Валеева А.А., Ваганова Е.С. Пироугли как перспективные почвенные мелиоранты: оценка содержания и спектральные свойства их липидных фракций // Ученые записки Казанского университета. Сер. Естественные науки. 2018. № 160. Кн. 2. С. 259–275.
- Соколов Д.А., Кулижский С.П., Лим А.Г., Гуркова Е.А., Нечаева Т.В., Мерзляков О.Э. Сравнительная оценка методов определения педогенного органического углерода в углесодержащих почвах // Вестник Томск. гос. ун-та. Сер. Биология. 2017. № 39. C. 29–43. https://doi.org/10.17223/19988591/39/2
- Холодов В.А., Ярославцева Н. В., Фарходов Ю. Р., Яшин М.А., Лазарев В.И., Ильин Б.С., Филиппова О.И., Воликов А.Б., Иванов А.Л. Оптические характеристики экстрагируемых фракций органического вещества типичных черноземов в многолетних полевых опытах // Почвоведение. 2020. № 6. С. 691–702. https://doi.org/10.31857/S0032180X20060052
- Abdel-Shafy H.I., Mansour M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation // Egypt. J. Petroleum. 2016. № 25. P. 107–123.
- Agarry S.E., Oghenejoboh K.M., Solomon B.O. Kinetic modelling and half life study of adsorptive bioremediation of soil artificially contaminated with bonny light crude oil // J. Ecol. Eng. 2015. V. 16. P. 1–13. https://doi.org/10.12911/22998993/2799
- Barrow C.J. Biochar: Potential for countering land degradation and for improving agriculture // Appl. Geogr. 2012. V. 34. P. 21–28. https://doi.org/10.1016/j.apgeog.2011.09.008
- Beesley L., Moreno-Jiménez E., Gomez-Eyles J.L., Harris E., Robinson B., Sizmur T. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils // Environ. Poll. 2011. V. 159. P. 3269–3282. https://doi.org/10.1016/j.envpol.2011.07.023
- Bilias F., Nikoli T., Kalderis D., Gasparatos D. Towards a Soil Remediation Strategy Using Biochar: Effects on Soil Chemical Properties and Bioavailability of Potentially Toxic Elements // Toxics. 2021. V. 9. P. 184. https://doi.org/10.3390/toxics9080184
- Buss W., Graham M.C., MacKinnon G., Mašek O. Strategies for producing biochars with minimum PAH contamination // J. Anal. Appl. Pyrol. 2016. V. 119. P. 24–30. https://doi.org/10.1016/j.jaap. 2016.04.001
- Cely P., Gascó G., Paz-Ferreiro J., Méndez A. Agronomic properties of biochars from different manure wastes // J. Anal. Appl. Pyrol. 2015. V. 111. P. 173–182. https://doi.org/0.1016/j.jaap. 2014.11.014
- Chibuike G.U., Obiora S.C. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods // Appl. and Environ. Soil Sci. 2014. V. 2014. P. 752708. https://doi.org/10.1155/2014/752708
- Chin Y., Aiken G., O’Loughlin E. Molecular Weight, Polydispersity, and Spectroscopic Properties of Aquatic Humic Substances // Environ. Sci. Tech. 1994. V. 11. P. 1853–1858. https://doi.org/10.1021/es00060a015
- Devi P., Saroha A.K. Effect of pyrolysis temperature on polycyclic aromatic hydrocarbons toxicity and sorption behaviour of biochars prepared by pyrolysis of paper mill effluent treatment plant sludge // Bioresource Technol. 2015. V. 192. P. 312–320. http://dx.doi.org/10.1016/j.biortech.2015.05.084
- EL-Sayed M.M., Mahdy A.Y., Gebreel M., Abdeenc S.A. Effectiveness of Biochar, Organic Matter and Mycorrhiza to Improve Soil Hydrophysical Properties and Water Relations of Soybean under Arid Soil Conditions // Eurasian Soil Sci. 2023. V. 56. P. 1055–1066. https://doi.org/10.1134/S1064229323600276
- Fabbri D., Rombolà A.G., Torri C., Spokas K.A. Determination of polycyclic aromatic hydrocarbons in biochar and biochar amended soil // J. Anal. Appl. Pyrol. 2013. V. 103. P. 60–67. https://doi.org/10.1016/j.jaap. 2012.10.003
- Gaskin J.W., Steiner C., Harris K., Das K.C., Bibens B. Effect of low–temperature pyrolysis conditions on biochar for agricultural use // Am. Soc. Agricult. Biolog. Engin. 2008. V. 51. P. 2061–2069. https://doi.org/10.13031/2013.25409
- Helms J.R., Stubbins A., Ritchie J.D., Minor E., Kieber D.J., Mopper K. Absorption spectral slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter // Limnology and Oceanography. 2008. V. 53. P. 955–969. https://doi.org/10.2307/40058211
- Hu Z., Li J., Wang H., Ye Z., Wang X., Li Y., Liu D., Song Z. Soil Contamination with Heavy Metals and Its Impact on Food Security in China // J. Geosci. Environ. Protection. 2019. V. 7. P. 168–183.
- International Biochar Initiative, Standardized Product Definition and Product Testing Guidelines for Biochar that is used in Soil. 2013. http://www.biochar–international.org/sites/default/files/IBI_Biochar_ Standards_V1.1.pdf
- Jamieson T., Sager E., Guéguen C. Characterization of biochar-derived dissolved organic matter using UV–visible absorption and excitation-emission fluorescence spectroscopies // Chemosphere. 2014. V. 103. P. 197–204. https://doi.org/10.1016/j.chemosphere.2013.11.066
- Jeffery S., Verheijen F.G.A., Kammann C., Abalos D. Biochar effects on methane emissions from soils: A meta-analysis // Soil Biol. Biochem. 2016. V. 101. P. 251–258. https://doi.org/10.1016/j.soilbio.2016.07.021
- Jeffery S., Verheijen F.G.A., van der Velde M., Bastos A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis // Agriculture, Ecosystems and the Environment. 2011. V. 144. P. 175–187. https://doi.org/10.1016/j.agee.2011.08.015
- Johnsen A.R., Karlson U. PAH degradation capacity of soil microbial communities–does it depend on PAH exposure? // Microbial Ecology. 2005. V. 50. P. 488–495. https://doi.org/10.1007/s00248-005-0022-5
- Junna S., Bingchen W., Gang X., Hongbo S. Effects of wheat straw biochar on carbon mineralization and guidance for large-scale soil quality improvement in the coastal wetland // Ecol. Eng. 2014. V. 62. P. 43–47. https://doi.org/10.1016/j.ecoleng.2013.10.014
- Kapoor A., Sharma R., Kumar A., Sepehya S. Biochar as a means to improve soil fertility and crop productivity: a review // J. Plant Nutr. 2022. V. 45. P. 2380–2388. https://doi.org/10.1080/01904167.2022.2027980
- Keiluweit M., Kleber M., Sparrow M.A., Simoneit B.R.T., Prahl F.G. Solvent-extractable polycyclic aromatic hydrocarbons in biochar: influence of pyrolysis temperature and feedstock // Environ. Sci. Technol. 2012. V. 46. P. 9333–9341. https://doi.org/10.1021/es302125k
- Keiluweit M., Nico P.S., Johnson M.G., Kleber M. Dynamic molecular structure of plant biomass–derived black carbon (biochar) // Environ. Sci. Technol. 2010. V. 44. P. 1247–1253. https://doi.org/10.1021/es9031419
- Kloss S., Zehetner F., Wimmer B., Buecker J., Rempt F., Soja G. Biochar application to temperate soils: Effects on soil fertility and crop growth under greenhouse conditions // J. Plant Nutr. Soil Sc. 2014. V. 177. P. 3–15. https://doi.org/10.1002/jpln.201200282
- Krzyszczak A., Dybowski M.P., Czech B. Formation of polycyclic aromatic hydrocarbons and their derivatives in biochars: The effect of feedstock and pyrolysis conditions // J. Anal. Appl. Pyrolysis. 2021. V. 160. P. 105339. https://doi.org/ 10.1016/j.jaap. 2021.105339
- Kumar A., Shrivastava A., Vimal V., Gupta A.K., Bhujbal S., Biswas J., Singh L., Ghosh P., Pandey A., Sharma P., Kumar M. Biochar application for greenhouse gas mitigation, contaminants immobilization and soil fertility enhancement: A state-of-the-art review // Sci. Total Environ. 2022. V. 853. P. 158562. https://doi.org/0.1016/j.scitotenv.2022.158562
- Kuryntseva P., Karamova K., Galitskaya P., Selivanovskaya S., Evtugyn G. Biochar functions in soil depending on feedstock and pyrolyzation properties with particular emphasis on biological properties // Agriculture. 2023. V. 13. P. 2003. https://doi.org/10.3390/agriculture13102003
- Lehmann J., Joseph S. Biochar for environmental management science technology and implementation. New York: Routledge, 2015. 976 p.
- Luo K., L, Y., Guan X. Zhang X. Effects of biochar with different particle sizes on soil physicochemical properties and vertical transport of selenium and cadmium // Eurasian Soil Sci. 2023. V. 56. P. 1999–2008. https://doi.org/10.1134/S1064229323601270
- Maestrini B., Nannipieri P., Abiven S. A meta-analysis on pyrogenic organic matter induced priming effect // Global Chan. Biol. 2015. № 7. P. 577–590. https://doi.org/10.1111/gcbb.12194
- Mambwe M., Kalebaila K.K., Johnson T. Remediation technologies for oil contaminated soil // Global J. Environ. Sci. Management. 2021. V. 7. P. 1–20. https://doi.org/10.22034/gjesm.2021.3.09
- Mazarji M., Minkina T., Sushkova S., Mandzhieva S., Barakhov A., Barbashev A., Dudnikova T., Lobzenko I., Giannakis S. Decrypting the synergistic action of the Fenton process and biochar addition for sustainable remediation of real technogenic soil from PAHs and heavy metals // Environ. Poll. 2022. V. 303. P. 119096. https://doi.org/10.1016/j.envpol.2022.119096
- Minnikova T., Kolesnikov S., Ruseva, A., Kazeev K., Minkina T., Mandzhieva S., Sushkova S. Influence of the biochar on petroleum hydrocarbon degradation intensity and ecological condition of Haplic Chernozem Eurasian // J. Soil Sci. 2022. V. 11. P. 157–166. https://doi.org/10.18393/ejss.1037798
- Okunev R.V, Smirnova E.V, Sharipova A.R, Gilmutdinova I.M., Giniyatullin K.G. Investigation of biological destruction of benzo[a]pyrene andpolycyclic aromatic hydrocarbons of biochar in soil // IOP Conference Series: Earth and Environmental Science. 2018. V. 107. P. 012121. https://doi.org/10.1088/1755–1315/107/1/012121
- Paz-Ferreiro J., Nieto, A., Méndez, A., Askeland, M.P.J., Gascó, G. Biochar from biosolids pyrolysis: A review // Int. J. Environ. Res. Public Health. 2018. V. 15. P. 956. https://doi.org/10.3390/ijerph15050956
- Qin G., Gong D., Fan M.Y. Bioremediation of petroleum–contaminated soil by biostimulation amended with biochar // Int. Biodeterior. Biodegr. 2013. V. 85. P. 150–155. https://doi.org/10.1016/j.ibiod.2013.07.004
- Rajput V.D., Chernikova N., Minkina T., Gorovtsov A., Fedorenko A., Mandzhieva S., Bauer T., Tsitsuashvili V., Beschetnikov V., Wong M.H. Biochar and metal-tolerant bacteria in alleviating ZnO nanoparticles toxicity in barley // Environ. Res. 2023. V. 220. P. 115243. https://doi.org/10.1016/j.envres.2023.115243
- Rizhiya E.Y., Buchkina N.P., Mukhina I.M., Belinets A.S., Balashov E.V. Effect of biochar on the properties of loamy sand Spodosol soil samples with different fertility levels: A laboratory experiment // Eurasian Soil Sci. 2015. V. 48. P. 192–200. https://doi.org/10.1134/S1064229314120084
- Selvarajoo A., Oochit D. Effect of pyrolysis temperature on product yields of palm fiber and its biochar characterictics // Mater. Sci. Energy Technol. 2020. V. 3. P. 575–583. https://doi.org/10.1016/j.mset.2020.06.003
- Seraj F., Rahman T. Heavy Metals, Metalloids, Their Toxic // Am. J. Plant Sci. 2018. V. 9. P. 2626–2643. https://doi.org/10.4236/ajps.2018.913191
- Stogiannidis E., Laane R.W.P.M. Source Characterization of Polycyclic Aromatic Hydrocarbons by Using Their Molecular Indices: An Overview of Possibilities // Rev. Environ. Contamin. Toxicol. 2015. V. 234. P. 49–133. https://doi.org/10.1007/978-3-319-10638-0_2
- Tsibart A.S., Gennadiev A.N. Polycyclic aromatic hydrocarbons in soils: sources, behavior, and indication significance (a review) // Eurasian Soil Sci. 2013. V. 46. P. 728–741. https://doi.org/10.1134/S1064229313070090
- Tu P., Zhang G., Wei G., Li J., Li Y., Lifang D., Yuan H. Influence of pyrolysis temperature on the physicochemical properties of biochars obtained from herbaceous and woody plants // Bioresources and Bioprocessing. 2022. V. 9. P. 131. https://doi.org/10.1186/s40643-022-00618-z
- Twardowski M.S., Boss E., Sullivan J.M., Donaghay P.L. Modeling the spectral shape of absorption by chromophoric dissolved organic matter // Mar. Chem. 2004. V. 89. P. 69–88. https://doi.org/10.1016/j.marchem.2004.02.008
- Valeeva A.A., Grigoryan B.R., Bayan M.R., Giniyatullin K.G., Vandyukov A.E., Evtygin V.G. Adsorption of methylene blue by biochar produced through torrefaction and slow pyrolysis from switchgrass // Res. J. Pharmaceut., Biol. Chem. Sci. 2015. V. 6. P. 8–17.
- Vasilyeva G., Mikhedova E., Zinnatshina L., Strijakova E., Akhmetov L., Sushkova S., Ortega-Calvo J.-J. Use of natural sorbents for accelerated bioremediation of grey forest soil contaminated with crude oil // Sci. Total Environ. 2022. V. 850. № 157952. https://doi.org/10.1016/j.scitotenv.2022.157952
- Vasilyeva G.K., Strijakova E.R., Ortega-Calvo J.-J. Remediation of Soils Polluted by Oil Industries // Remediation Science and Technology. The Handbook of Environmental Chemistr. Springer, 2024. V. 130. https://doi.org/10.1007/698_2024_1080
- Wang C., Wang Y., Herath H.M.S.K. Polycyclic aromatic hydrocarbons (PAHs) in biochar – Their formation, occurrence and analysis: A review // Org. Geochem. 2017. V. 114. P. 1–11. https://doi.org/10.1016/j.orggeochem.2017.09.001
- Wang Y., Li F., Rong X., Song H., Chen J. Remediation of petroleum–contaminated soil using bulrush straw powder, biochar and nutrients // Bull. Environ. Contamin. Toxicol. 2017. V. 98. P. 690–697. https://doi.org/10.1007/s00128-017-2064-z
- Weishaar J.L., Aiken G.R., Bergamaschi B.A., Fram M.S., Fugii R. Mopper K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon // Environ. Sci. Technol. 2003. V. 37. P. 4702–4708. https://doi.org/10.1021/es030360x
- Xu G., Lv Y., Sun J., Shao H., Wei L. Recent Advances in Biochar Applications in Agricultural Soils: Benefits and Environmental Implications // Clean-Soil, Air, Water. 2012. V. 40. P. 1093–1098. https://doi.org/10.1002/clen.201100738
- Xue Y., Wang C., Hu Z., Zhou Y., Xiao Y., Wang T. Pyrolysis of sewage sludge by electromagnetic induction: Biochar properties and application in adsorption removal of Pb(II), Cd(II) from aqueous solution // Waste Management. 2019. V. 89. P. 48–56. https://doi.org/10.1016/j.wasman.2019.03.047
- Yan J., You X., Li X., Ni M., Yin X., Cen K. Performance of PAHs emission from bituminous coal combustion // J. Zhejiang University. 2004. V. 5. P. 1554–1564. https://doi.org/10.1631/jzus.2004.1554
- Zhang C., Wu D., Ren H. Bioremediation of oil contaminated soil using agricultural wastes via microbial consortium // Scientif. Rep. 2020. V. 10. P. 9188. https://doi.org/10.1038/s41598-020-66169-5
- Zhang X., Zhao B., Liu H., Zhao Y., Li L. Mechanisms of sludge biochar effects on thermal properties of a loess soil (sierozem) // Eurasian Soil Sci. 2023. V. 56. P. 1683–1695. https://doi.org/10.1134/S1064229323600689
Дополнительные файлы
