Radiation-Initiated Dehalogenation of Organofluorine Compounds in Aqueous Solutions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The γ-radiolysis of 2-fluoroethanol-1, 2,2,2-trifluoroethanol-1, 3-fluoropropanol-1, and 4,4,4- trif luorobutanol-1 in aqueous solutions in an inert atmosphere or in the presence of oxygen has been studied. It has been found that the dehalogenation of hydroxyl-containing organic compounds is induced by •ОН and Н• radicals rather than hydrated electrons. The carbon-centered α-hydroxy-β-fluoroethyl radicals FCH2–•CHOH are def luorinated much more efficiently than α-fluoroalkyl radicals, both vicinal (F–•CHCH2OH) and nonvicinal (F–•CHCH2CH2OH). In the absence of oxygen, α-fluoroalkyl radicals
eliminate fluoride ions by the mechanism of nucleophilic substitution, and this process is enhanced in the presence of alkali. In an oxygenated medium, the dehalogenation of α-fluoroalkyl radicals occurs via the addition of oxygen molecules to them and the subsequent disproportionation of resulting peroxyl radicals. The dehalogenation of the α-hydroxy-β-fluoroethyl radicals FCH2–•CHOH is inhibited by oxygen through their oxidation.

Sobre autores

O. Tugai

Belarusian State University

Email: kasabutski@bsu.by
Minsk, 220030 Belarus

V. Kosobutskii

Belarusian State University

Email: kasabutski@bsu.by
Minsk, 220030 Belarus

R. Sverdlov

Belarusian State University; Research Institute for Physicochemical Problems, Belarusian State University

Email: kasabutski@bsu.by
Minsk, 220030 Belarus; Minsk, 220006 Belarus

S. Brinkevich

Belarusian State University

Email: kasabutski@bsu.by
Minsk, 220030 Belarus

S. Lastovskii

Scientific and Practical Center for Materials Science, National Academy of Sciences of Belarus

Autor responsável pela correspondência
Email: kasabutski@bsu.by
Minsk, 220072 Belarus

Bibliografia

  1. Trojanowicz M., Bartosiewicz I., Bojanowska-Czajka A., Kulisa K., Szreder T., Bobrowski K., Nichiporc H., Garcia-Reyes J.F., Nałęcz-Jaweckie G., Męczyńska-Wiel-gosz S., Kisała J. // Chemical Engineering J. 2019. V. 357. P. 698.
  2. Бринкевич С.Д., Суконко О.Г., Чиж Г.В., Полойко Ю.Ф. // Медико-биологические проблемы жизнедеятельности. 2014. № 11. С. 151.
  3. Бринкевич С.Д., Тугай О.В., Невзоров Д.И. // Химия высоких энергий. 2019. Т. 53. № 4. С. 294.
  4. Лурье Ю.Ю. Аналитическая химия промышленных сточных вод / Ю.Ю Лурье. М.: Химия, 1984. 448 с.
  5. Бринкевич С.Д., Тугай О.В., Сладкова А.А., Шадыро О.И. // Химия высоких энергий. 2020. Т. 54. № 6. С. 323.
  6. Пикаев А.К. Современная радиационная химия. Радиолиз газов и жидкостей. М.: Наука, 1986. 440 с.
  7. Кособуцкий В.С. // Химия высоких энергий. 2006. Т. 40. № 5. С. 323.
  8. Кособуцкий В.С., Тугай О.В., Свердлов Р.Л., Бринкевич С.Д. // Химия высоких энергий. 2022. Т. 56. № 4. С. 293–295.
  9. Кособуцкий В.С., Петряев Е.П. // Журн. органической химии. 1993. Т. 29. № 2. С. 235.
  10. Alfassi Z.B., Khaikin G.I., Johnson III R.D., Neta P. // J. Phys. Chem. 1996. V. 100. № 39. P. 15961.
  11. Asmus K.-D., Mockel H., Henglein A. // J. Phys. Chem. 1973. V. 77. P. 1218–1221.
  12. Кособуцкий В.С., Петряев Е.П. // Журн. органической химии. 1993. Т. 29. № 3. С. 470.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © О.В. Тугай, В.С. Кособуцкий, Р.Л. Свердлов, С.Д. Бринкевич, С.Б. Ластовский, 2023