Конформация моделей белков при мутациях в генах, ассоциированных с гаплоиндукцией и эмбриогенезом кукурузы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В статье приведен анализ изменения вторичной, третичной структуры и конформации моделей белков, влияющих на гиногенез и эмбриогенез у кукурузы (Zea mays L.), при спонтанных мутациях в нуклеотидных последовательностях кодирующих их генов. В частности, установлено, что вставка четырех нуклеотидов в последовательность гена Zm_Mtl/Nld/Pla1 у гаплоиндуцирующих линий кукурузы (Stock 6, ЗМС-8, ЗМС-П) приводит к замене двух α-спиралей белка неструктурированным участком и изменению аминокислотного состава одной из β-складок. Показано, что однонуклеотидная замена в положении 131 от стартового кодона гена Zm_Dmp7/Duf679 у гаплоиндуцирующей линии кукурузы CAU5 приводит к изменению конформации белка DMP8/DUF679, в частности к изменению положения α-спирали, в отличие от гаплоиндуцирующей линии ЗМС-8, имеющей аналогичную и две дополнительные аминокислотные замены в белке DMP8/DUF679. Однонуклеотидные замены в генах Zm_Bbm1 партеногенетической линии (АТ-4), Zm_CenH3 гаплоиндуцирующих (ЗМС-8, ЗМС-П) и контрольной (КМ) линий кукурузы не приводят к изменению аминокислот соответствующих белков.

Полный текст

Доступ закрыт

Об авторах

В. В. Фадеев

Институт биохимии и физиологии растений и микроорганизмов Саратовского научного центра Российской академии наук

Email: chumakov_m@ibppm.ru
Россия, Саратов, 410049

Ю. В. Фадеева

Институт биохимии и физиологии растений и микроорганизмов Саратовского научного центра Российской академии наук

Email: chumakov_m@ibppm.ru
Россия, Саратов, 410049

Е. М. Моисеева

Институт биохимии и физиологии растений и микроорганизмов Саратовского научного центра Российской академии наук

Email: chumakov_m@ibppm.ru
Россия, Саратов, 410049

М. И. Чумаков

Институт биохимии и физиологии растений и микроорганизмов Саратовского научного центра Российской академии наук

Автор, ответственный за переписку.
Email: chumakov_m@ibppm.ru
Россия, Саратов, 410049

Список литературы

  1. Навашин С.Г. Избранные труды. Т. 1. М.; Л.: Изд-во АН СССР, 1951. 364 с.
  2. Chase S.S. Monoploid frequencies in a commercial double cross hybrid maize, and its component single cross hybrids and inbred lines // Genetics. 1949. V. 34. P. 328–332.
  3. Coe E.H. A line of maize with high haploid frequency // Am. Naturalist. 1959. V. 59. P. 381–382.
  4. Чумаков М.И., Мазилов С.И. Генетический контроль гиногенеза у кукурузы (обзор) // Генетика. 2022. Т. 58. № 4. C. 388–397. https://doi.org/10.31857/S001667582204004X
  5. Kelliher T., Starr D., Richbourg L. et al. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction // Nature. 2017. V. 542. P. 105–109. https://doi.org/10.1038/nature20827
  6. Gilles L.M., Khaled A., Laffaire J.B. et al. Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize // EMBO J. 2017. V. 36. P. 707–717. https://doi.org/10.15252/embj.201796603
  7. Liu C., Li X., Meng D. et al. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize // Mol. Plant. 2017. V. 10. P. 520–522. https://doi.org/10.1016/j.molp.2017.01.011
  8. Gilles L.M., Calhau A.R.M., La Padula V. et al. Lipid anchoring and electrostatic interactions target NOT-LIKE-DAD to pollen endo-plasma membrane // J. Cell Biol. 2021. V. 220. https://doi.org/10.1083/jcb.202010077
  9. Takahashi T., Mori T., Ueda K. et al. The male gamete membrane protein DMP9/DAU2 is required for double fertilization in flowering plants // Development. 2018. V. 45. Iss. 23. https://doi.org/10.1242/dev.170076
  10. Zhong Y., Liu C., Qi X. et al. Mutation of ZmDMP enhances haploid induction in maize // Nature Plants. 2019. V. 5. P. 575–580. https://doi.org/10.1038/s41477-019-0443-7
  11. Burrack L.S., Berman J. Flexibility of centromere and kinetochore structures // Trends in Genetics. 2012. V. 28. № 5. P. 204–212. https://doi.org/10.1016/j.tig.2012.02.003
  12. Hoopes G.M., Hamilton J.P., Wood J.C. et al. An updated gene atlas for maize reveals organ-specific and stress-induced genes // The Plant Journal. 2019. V. 97. № 6. P. 1154–1167. https://doi.org/10.1111/tpj.14184
  13. Stelpflug S.C., Sekhon R.S., Vaillancourt B. et al. An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development // The Plant Genome. 2016. V.9 (1). P. 1–16. https://doi.org/10.3835/plantgenome2015.04.0025
  14. Chalyk S.T., Baumann A., Daniel G., Eder J. Aneuploidy as a possible cause of haploid-induction in maize // Maize Genetics Coop. Newsletter. 2003. V. 77. P. 29–30.
  15. Karimi-Ashtiyani R., Ishii T., Niessen M. et al. Point mutation impairs centromeric CENH3 loading and induces haploid plants // Proc. Nat Acad. Sci. USA. 2015. V. 112. № 36. P. 11211–11216. https://doi.org/10.1073/pnas.150433311
  16. Wang S., Jin W., Wang K. Centromere histone H3- and phospholipase-mediated haploid induction in plants // Plant Methods. 2019. V. 15. № 1. P. 1–10. https://doi.org/10.1186/s13007-019-0429-5
  17. Zhang Z., Qiu F., Liu Y. et al. Chromosome elimination and in vivo haploid production induced by Stock 6 – derived inducer line in maize (Zea mays L.) // Plant Cell Reports. 2008. V. 27. № 12. P. 1851–1860. https://doi.org/10.1007/s00299-008-0601-2
  18. Qiu F., Liang Y., Li Y. et al. Morphological, cellular and molecular evidences of chromosome random elimination in vivo upon haploid induction in maize // Current Plant Biology. 2014. V. 1. P. 83–90. https://doi.org/10.1016/j.cpb.2014.04.001
  19. Kelliher T., Starr D., Wang W. et al. Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize // Frontiers in Plant Sci. 2016. V. 7. P. 414. https://doi.org/10.3389/fpls.2016.00414
  20. Heidmann I., De Lange B., Lambalk J. et al. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor // Plant Cell Rep. 2011. V. 30. P. 1107–1115. https://doi.org/10.1007/s00299-011-1018-x
  21. Florez S.L., Erwin R.L., Maximova S.N. et al. Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor // BMC Plant Biol. 2015. V. 15. P. 121. https://doi.org/10.1186/s12870-015-0479-4
  22. Conner J.A., Mookkan M., Huo H. et al. A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant // Proc. Natl Acad. Sci. USA. 2015. V. 112. № 36. P. 11205–11210. https://doi.org/10.1073/pnas.1505856112
  23. Conner J.A., Podio M., Ozias-Akins P. Haploid embryo production in rice and maize induced by PsASGR-BBML transgenes // Plant Reprod. 2017. V. 30 (1). P. 41–52. https://doi.org/10.1007/s00497-017-0298-x
  24. Moiseeva E.M., Fadeev V.V., Fadeeva Yu.V. et al. Comparative analysis of maize gynogenesis gene mutation // Russ. J. Genet. 2024. V. 60 (10). P. 1333–1340. https://doi.org/10.1134/S102279542470087X
  25. Jiang C., Sun J., Li R. et al. A reactive oxygen species burst causes haploid induction in maize // Molecular Plant. 2022. V. 15 (6). P. 943–955. https://doi.org/10.1016/j.molp.2022.04.001
  26. Xu X., Li L., Dong X. et al. Gametophytic and zygotic selection leads to segregation distortion through in vivo induction of a maternal haploid in maize // J. Exp. Bot. 2013. V. 64. P. 1083–1096. https://doi.org/10.1093/jxb/ers393
  27. Еналеева Н.Х., Тырнов В.С., Селиванова Л.П., Завалишина А.Н. Одинарное оплодотворение и проблема гаплоиндукции у кукурузы // Докл. АН СССР. 1997. Т. 353. С. 405–407.
  28. Гуторова О.В., Апанасова Н.В., Юдакова О.И. Создание генетически маркированных линий кукурузы с наследуемым и индуцированным типами партеногенеза // Изв. Самарского науч. центра РАН. 2016. Т. 18. № 2. С. 341–344.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Множественное выравнивание фрагмента аминокислотной последовательности белка Zm_MTL/NLD/PLA1 гаплоиндуцирующих линий Stock 6/ЗМС-8/ЗМС-П. Место изменения аминокислотной последовательности отмечено рамкой. Точками на рисунке отмечены аминокислотные совпадения, прочерками – отсутствие аминокислот.

Скачать (86KB)
3. Рис. 2. Трехмерная модель белка Zm_PLA1 линий B73 (а) и Stock 6/ЗМС-8/ЗМС-П (б) (AlphaFold3). β-складка и две α-спирали линии B73, выделенные зеленым цветом, в результате четырехнуклеотидной вставки заменены неструктурированным участком и измененной по аминокислотному составу β-складкой, отмеченными красным цветом.

Скачать (247KB)
4. Рис. 3. Множественное выравнивание аминокислотной последовательности белков DMP8/DUF679 линий B73, CAU5, ЗМС-П и ЗМС-8. Замены аминокислот выделены жирным шрифтом.

Скачать (379KB)
5. Рис. 4. Предсказанные AlphaFold3 трехмерные структуры белка DMP8/DUF679, кодируемого геном Zm_Dmp7/Duf679 линий кукурузы B73 (а), CAU5 (б), ЗМС-П (в) и ЗМС-8 (г). Места аминокислотных замен отмечены красным цветом.

Скачать (214KB)
6. Рис. 5. Фрагменты нуклеотидного выравнивания гена Zm_Bbm1 линий кукурузы B73 и АТ-4, содержащие однонуклеотидные замены. Точками отмечены совпадения нуклеотидов; буквами, выделенными жирным шрифтом, отмечены однонуклеотидные замены.

Скачать (195KB)

© Российская академия наук, 2025